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Moduli spaces of symmetric cubic fourfolds
and locally symmetric varieties

Chenglong Yu and Zhiwei Zheng

We realize the moduli spaces of cubic fourfolds with specified group actions as arithmetic quotients of
complex hyperbolic balls or type IV symmetric domains, and study their compactifications. We prove the
geometric (GIT) compactifications are naturally isomorphic to the Hodge theoretic (Looijenga, in many
cases Baily–Borel) compactifications. The key ingredients of the proof are the global Torelli theorem by
Voisin, the characterization of the image of the period map given by Looijenga and Laza independently,
and the functoriality of Looijenga compactifications proved in the Appendix.

A list of symbols can be found on page 2680.

1. Introduction

Cubic fourfolds are intensively studied objects in algebraic geometry. There are many interesting relations
and analogues between cubic fourfolds and K 3 surfaces. The Hodge structure on the primitive middle
cohomology H 4

0 (X) of a smooth cubic fourfold X is of K 3 type. On the other hand, the Fano scheme of
lines on a smooth cubic fourfold is a hyper-Kähler fourfold of K 3[2] type; see [Beauville and Donagi
1985]. Similar to K 3 surfaces, people have a good understanding of the period map for cubic fourfolds.
The period map P gives an algebraic map from the moduli of smooth cubic fourfolds to an arithmetic
quotient of a 20-dimensional type IV domain. This period map is an open embedding due to the global
Torelli theorem by Voisin [1986]. The image of the period map is the complement of certain hypersurface
arrangement. This was proved by Looijenga [2009] and Laza [2010] independently.

Zarhin [1983] classified the Mumford–Tate groups of K 3-type Hodge structures. The corresponding
Mumford–Tate domains are either complex hyperbolic balls or type IV domains. Examples of those
Mumford–Tate groups can arise when the Hodge structures admit extra symmetries. This leads us to study
moduli spaces of cubic fourfolds with specified group actions. For cubic fourfolds, any automorphisms are
induced from linear automorphisms of P5. This is a general fact for almost all hypersurfaces in projective
spaces with degree at least 3; see [Matsumura and Monsky 1963]. Moreover, in [Zheng 2019], the second
author checked that any automorphism of the polarized Hodge structure on the middle cohomology of
a smooth cubic fourfold is induced by a unique automorphism of the cubic fourfold. Therefore, the
symmetries of polarized Hodge structures for cubic fourfolds can be detected geometrically by linear
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symmetries. These facts give rise to identifications between moduli spaces constructed by GIT and
arithmetic quotients of complex hyperbolic balls or type IV domains. We next review two such examples.

One example regarding the complex hyperbolic ball is given by Looijenga and Swierstra [2007] and
Allcock, Carlson and Toledo [2011] independently on the moduli space of cubic threefolds. They attach
to cubic threefolds the Hodge structures of cubic fourfolds with specified automorphism with order 3.
Explicitly, suppose the cubic threefold is given by a polynomial F(x1, . . . , x5), then the corresponding
symmetric cubic fourfold we looking at is x3

0+F(x1, . . . , x5)= 0. Via this construction, the moduli space
of cubic threefolds with at worst ADE singularities is identified with the complement of an irreducible
totally geodesic hypersurface in an arithmetic quotient of a complex hyperbolic ball of dimension 10. The
phenomena that the image of a period map is the complement of some totally geodesic hypersurfaces in a
locally symmetric variety appear in many examples besides cubic fourfolds and cubic threefolds. In fact,
type IV domains and complex hyperbolic balls are the only irreducible Hermitian symmetric domains
admitting totally geodesic hypersurfaces. Coming back to cubic threefolds, on the geometric side, we have
the natural GIT compactification of the moduli space of cubic threefolds. On the Hodge theoretic side,
there is a natural compactification of the complement of the hypersurface arrangements, building upon
Baily–Borel compactification. The construction of this Hodge-theoretic compactification was carried out
by Looijenga [2003a], inspired by work of Shah, consisting of two steps. The first step is a partial blowup
of the boundary components of Baily–Borel compactification, sitting between toroidal compactification
and Baily–Borel compactification. The second step is a successive blowup of the intersection strata of
hyperplane arrangements and blowdown in the opposite direction; see the Appendix for a discussion of
Looijenga compactification. The fascinating result proved in [Looijenga and Swierstra 2007; Allcock
et al. 2011] is the existence of a natural isomorphism between the GIT compactification and Looijenga
compactification, which are from totally different origins.

Another example regarding type IV domain was given by Laza, Pearlstein and Zhang [Laza et al. 2018]
recently. They considered the moduli space of pairs consisting of a cubic threefold F(x1, . . . , x5)= 0
and a hyperplane section H(x1, . . . , x5)= 0, or equivalently the moduli of cubic fourfolds

x2
0 H(x1, . . . , x5)+ F(x1, . . . , x5)= 0

which have natural involutions x0 7→ −x0. The period map gives rise to an identification between the
moduli space of the pairs and an arrangement complement in an arithmetic quotient of a type IV domain
of dimension 14. Moreover, Laza, Pearlstein and Zhang showed that with a careful choice of linearization
(which is indeed natural as we will discuss in Proposition 6.8) in the GIT construction, the pairs which
give rise to symmetric cubic fourfolds with at worst ADE singularities are stable, and their moduli can
be identified with the whole arithmetic quotient. Finally, they showed that the GIT compactification is
isomorphic to the Baily–Borel compactification of the arithmetic quotient.

The first key observation of this work is that the phenomena in the above two examples should also
appear in a much more general situation, namely, for cubic fourfolds with any given symmetry. Along
this direction, we are able to unify many examples studied before (including the two above), and produce
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many new identifications between GIT compactifications and Hodge-theoretic compactifications. Before
giving the main theorems, we introduce some notation.

For a smooth cubic fourfold X, we have the Hodge decomposition

H 4(X,C)= H 3,1(X)⊕ H 2,2(X)⊕ H 1,3(X),

where dim(H 3,1)= dim(H 1,3)= 1, and dim H 2,2
= 21. We denote by ϕX : H 4(X,C)× H 4(X,C)→ C

the topological intersection pairing, whose restriction to H 4(X,Z)× H 4(X,Z) is an integral unimodular
bilinear form of signature (21, 2).

Let X be a smooth cubic fourfold with an action of a finite group A. All deformations of the pair
(X, A) form a quasiprojective variety F, which is called the moduli space of smooth cubic fourfolds with
this given group action. See Section 2 for a GIT construction of F. There is a natural morphism (via
forgetting the action of A) from F to the moduli space M of smooth cubic fourfolds, which is a finite
morphism (see Proposition 2.8). Moreover, when the action of A realizes all the automorphisms of X, the
morphism j : F→M is a normalization of its image.

On the other hand, we look at the induced action of A on the Hodge structure of the cubic fourfold X.
This induces a character ζ : A→ GL(H 3,1(X))∼= C× of A. Denote by H 4(X)ζ the ζ -eigenspace of the
action of A. There is a Hermitian form h : H 4(X)ζ ×H 4(X)ζ→C defined by h(x, y)= ϕX (x, y) for any
x, y ∈ H 4(X)ζ . If ζ = ζ , then h has signature (n′, 2) and there is an type IV domain D associated with
(H 4(X)ζ , h). If ζ 6= ζ , the form h has signature (n′, 1) and there is an associated complex hyperbolic
ball, which we still denote by D for the moment, with (H 4(X)ζ , h); see Proposition 4.1. The discussion
above applies to any cubic fourfolds X ′ in F and the Hodge structures on H 4(X ′)ζ give rise to a period
map from F to an arithmetic quotient 0\D. Here 0 is an arithmetic group acting properly discontinuously
on D (see the beginning of Section 4C for the definition).

Notice that n′ is the dimension of the Hermitian symmetric domain D. We denote by n the dimension
of F. The first main theorem of the paper is the following:

Theorem 1.1 (Main Theorem 1). (i) We have the equality n′ = n.

(ii) The period map P : F ∼= 0\(D−Hs) is an algebraic isomorphism. Here Hs is a 0-invariant
hyperplane arrangement in D.

(iii) The period map P extends naturally to an algebraic isomorphism F1 ∼= 0\(D−H∗), where F1 is a
natural partial completion of F, adding cubic fourfolds with at worst ADE-singularities, and H∗ is a
0-invariant hyperplane arrangement contained in Hs .

Denote by F the GIT compactification of F ; see Section 2B. For a 0-invariant hyperplane arrange-
ment H in D, we denote by 0\D

H
the Looijenga compactification of 0\(D−H); see Section A5. We

characterize F via:

Theorem 1.2 (Main Theorem 2). (i) The period map P extends to an algebraic isomorphism F ∼=
0\D

H∗ between the two projective varieties.
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(ii) There are two pairs (G1, λ1) and (G2, λ2), each consists of a subgroup of SL(6,C) and a character
of the subgroup (see Definition 5.6), such that the hyperplane arrangement H∗ is empty if and only
if for i = 1 or 2, there exists h ∈ GL(6,C) with h−1 Ah ⊂ Gi and λ(a)= λi (h−1ah) for any a ∈ A.
In this case, the Looijenga compactification 0\D

H∗ is the Baily–Borel compactification 0\D
bb

. See
Theorem 5.7 for a complete statement.

In the previous works for cubic fourfolds [Looijenga 2009; Laza 2010], cubic threefolds [Allcock
et al. 2011; Looijenga and Swierstra 2007] and pairs consisting of a cubic threefold and a hyperplane
section [Laza et al. 2018], the extended isomorphisms between the GIT compactifications and Looijenga
compactifications rely on the machinery developed in [Looijenga 2003a; 2003b]. The key observation
is that the period map also identifies the GIT polarization and the automorphic bundle on the period
domain. If the period map can be extended to a Zariski-open subset U such that its complement in the
GIT compactification has codimension at least 2, then the coordinate ring of the GIT compactification
consists of sections (of the GIT polarization) over U. On the other hand, if each nonempty intersection of
members in H has dimension at least 2, then the 0-invariant automorphic sections with poles along H
form the coordinate ring of the Looijenga compactification. Therefore, the two compactifications are
identified if the two conditions hold.

For each case, the hard work on GIT side is to extend the defining domain of the period map to moduli
space of varieties with at worst simple singularities and obtain codimension estimate for the indeterminacy
locus. On the period domain side one need to obtain dimension estimate for all possible intersections
of members in H. Usually this is achieved by careful lattice analysis. In some cases people also need
the correct choice of polarization on the GIT side in order to have such an extension. In our setting for
Theorems 1.1 and 1.2, the dimension estimate fails in some cases, for example when A is a cyclic group
of order 7; see Remark 6.7. So the previous approach does not work for all symmetry types.

We developed a new approach by considering the functorial properties on both GIT and Hodge theory
side. We explain the proof of Theorems 1.1 and 1.2 with the following diagram:

F 0\(D−Hs)

F 0\D
H∗

M 0̂\D̂
H∞

∼=

j π

P

Here M is the GIT compactification of the moduli space of cubic fourfolds, 0̂\D̂ is the period domain
for cubic fourfolds and H∞ is a (0̂-invariant) hyperplane arrangement. These are explained in detail
in Section 3. The bottom isomorphism in the above diagram is the main result in [Looijenga 2009;
Laza 2010]. The top isomorphism is Proposition 4.10 proved in Section 4, which relies essentially on
the global Torelli for cubic fourfolds. The left vertical morphism j is finite due to a classical result
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by Luna [1975] (with a modified version for projective GIT quotients; see [Ressayre 2010]). This
is included in Proposition 2.7. The right vertical morphism π is also finite, which is proved in the
Appendix; see Theorem A.13. After establishing the two finiteness results (of j and π ) and the horizontal
bimeromorphism between F and 0\D

H∗ , we show that the period map P : F ∼= 0\(D−Hs) extends to
an isomorphism F ∼= 0\D

H∗ by Lemma 5.4.
Our formalism of the proof does not need the codimension and dimension estimates, and hence

avoids complicated GIT and lattice analysis. Finally, we reduce the complication to the proof of the
functorial property of Looijenga compactifications. This allows us to deal with the theory uniformly and
systematically for all symmetry types of cubic fourfolds. To the best of our knowledge, this formalism is
new and may have further applications.

In many cases, the hyperplane arrangement H∗ is empty; hence the Looijenga compactification is
simply Baily–Borel compactification (for example, [Laza et al. 2018]). We discuss in Section 5 a criterion
(Theorem 5.7) based on the symmetry type for the emptiness of H∗. In particular, we apply the criterion
to determine the emptiness of H∗ for all symmetry type with A a prime-order cyclic group.

We end the introduction with a discussion on future works. A closely related question is to classify
automorphism groups of cubic fourfolds. There are 13 conjugacy classes of prime-order automorphisms of
smooth cubic fourfolds (see [González-Aguilera and Liendo 2011]). For two of them, our main theorems
recover some of the main results in [Allcock et al. 2011; Looijenga and Swierstra 2007; Laza et al. 2018].
We will discuss these examples in more detail in Sections 6A and 6B.

Cubic fourfolds have very close relation with hyper-Kähler manifolds; see [Beauville and Donagi 1985;
Hassett 2000]. For a smooth cubic fourfold X, its Fano scheme of lines is a polarized hyper-Kähler fourfold
of K 3[2] type. The automorphism group of a smooth cubic fourfold X is naturally identified with the
automorphism group of the associated polarized hyper-Kähler manifold; see [Fu 2016]. The classification
of automorphism groups of hyper-Kähler manifolds has appealed to a lot of interests recently. There
is a systematic study by Mongardi in his thesis [2012; 2013; 2016]. Höhn and Mason [2019] classified
all maximal finite symplectic automorphism groups of hyper-Kähler fourfolds of K 3[2] type. Those
groups are all subgroups of the Conway group. Recently, Laza and the second author classified all finite
symplectic automorphism groups of smooth cubic fourfolds; see [Laza and Zheng 2019] . While related to
Höhn and Mason’s classification [2019], the main difference in [Laza and Zheng 2019] is that the authors
are dealing with “polarized” hyper-Kähler fourfolds. Moreover, in many cases the explicit normal forms
for the cubic fourfolds with a specified symplectic automorphism group are given. This classification offers
a bunch of examples for Theorems 1.1 and 1.2 with D being type IV domains. Another closely related
problem is to characterize the moduli spaces of symmetric or lattice-polarized hyper-Kähler manifolds.
There are works along this direction; see [Dolgachev and Kondō 2007, Section 11; Artebani et al. 2011,
Section 9; Joumaah 2016; Camere 2016, Section 3; Boissière et al. 2016, Section 5; Boissière et al. 2019]

The symmetries of the Hodge structures can also arise from degenerations of cubic fourfolds or K 3
surfaces. For example, we consider a one-parameter degeneration of smooth cubic fourfolds to a singular
cubic fourfold with only one node. The monodromy of the family gives a reflection on the primitive middle
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cohomology. The Hodge structures fixed by this reflection form a hyperplane in the period domain D̂,
which is a 19-dimensional type IV domain. On the geometric side, such singular cubic fourfolds naturally
give rise to K 3 surfaces of degree 6. So the proof above can also be applied to obtain comparison
between GIT compactification of K 3 surfaces of degree 6 and Baily–Borel compactification of period
domain. Following this perspective, we are able to realize moduli of singular sextic curves (regarding
as singular K 3 surfaces of degree 2) as arithmetic quotients of type IV domains and again identify GIT
compactification and Looijenga compactification; see [Yu and Zheng 2018].

Structure of the paper. Section 2 is devoted to the GIT construction of symmetric hypersurfaces in
general. In Section 3 we review concepts about cubic fourfolds, and introduce the global Torelli theorem.
Sections 4 and 5 are the main part of the paper, where we formulate and prove our main theorems.
As we have mentioned, one of the key ingredients in the proof is the functorial property of Looijenga
compactifications. This is treated in the Appendix. Moduli of cubic fourfolds with specified action by
cyclic group is discussed in Section 6.

2. General setup: symmetric hypersurfaces

2A. Space of symmetric polynomials. Let V be a complex vector space of dimension k+ 2. Denote by
Symd(V ∗) the space of degree d polynomials on V. We have the natural action of SL(V ) on Symd(V ∗),
namely, g(F) = F ◦ g−1 for g ∈ SL(V ) and F ∈ Symd(V ∗). The center of SL(V ) is the group µk+2

consisting of (k+2)-th roots of unity. Let A be a finite subgroup of SL(V ) containing µk+2 and denote
by A = A/µk+2 the image of A in PSL(V ). Then Symd(V ∗) is a representation of A.

For any ξ ∈ µk+2 and F ∈ Symd(V ∗), we have ξ(F) = ξ−d F. Let λ : A→ C× be a character of A
such that λ|µk+2 sends ξ ∈ µk+2 to ξ−d . Let Vλ be the λ-eigenspace of Symd(V ∗). We write V = Vλ for
short. Geometrically, an element in V determines a degree d hypersurface (not necessarily smooth) in PV,
whose automorphism group contains A.

Two pairs (A1, λ1) and (A2, λ2) are called equivalent if and only if there exists g ∈ SL(V ) such that
g A1g−1

= A2 and λ1(a1)= λ2(ga1g−1) for any a1 ∈ A1. We call an equivalence class a symmetry type,
denoted by T. There is a poset structure on the space of symmetry types, namely, T2 ≤ T1 if T1, T2 are
represented by (A1, λ1), (A2, λ2) respectively, such that A1 ⊂ A2 and λ1 = λ2|A1 . Notice that the space V
depends on the representative (A, λ) of T.

For F ∈ V, we denote by Z(F) the hypersurface defined by F in PV. For X = Z(F), we denote by
Aut(X) the group of elements in PSL(V ) preserving X, and by Aut(F) the preimage of Aut(X) in SL(V ).
From [Matsumura and Monsky 1963, Theorems 1 and 2] we have:

Theorem 2.1 (Matsumura–Monsky). When X is smooth, d ≥ 3, k ≥ 2,

(i) the group Aut(X) is finite,

(ii) if (d, k) 6= (4, 2), the group Aut(X) contains all biregular automorphisms of X.

For any X = Z(F), the group A is naturally a subgroup of Aut(X). We propose the following conditions
on the symmetry type T :
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Condition 2.2. The linear space V contains a point F defining a smooth hypersurface.

Condition 2.3. The linear space V contains a point F with the hypersurface X = Z(F) smooth and
A = Aut(X).

Remark 2.4. Condition 2.3 is indeed stronger than Condition 2.2. For example, a smooth cubic fourfold
with an automorphism of order 7 can be defined by a polynomial

F(x0, . . . , x6)= x2
0 x4+ x2

1 x2+ x0x2
2 + x2

3 x5+ x3x2
4 + x1x2

5 + ax0x1x3+ bx2x4x5

with a, b∈C (see Proposition 6.1). The order 7 automorphism ρ is given by xi 7→ωi+1xi for ω a primitive
7-root of unity. On the other hand, such a polynomial always admits an order 3 automorphism given by
(x0, x1, x2, x3, x4, x5) 7→ (x1, x3, x5, x0, x2, x4). If we take A = 〈ρ〉 and take λ trivial, then (A, λ) is a
symmetry type satisfying Condition 2.2. However, for a generic member F ∈ V, the automorphism group
Aut(Z(F)) is strictly larger than A. Thus the symmetry type does not satisfy Condition 2.3. See [Laza
and Zheng 2019, Theorem 1.2] for more such examples.

For T satisfying Condition 2.2, a generic point in V defines a smooth hypersurface. We have a similar
result about Condition 2.3.

Proposition 2.5. If T = [(A, λ)] satisfies Condition 2.3, then a generic element in V defines a smooth
hypersurface X with A = Aut(X).

Proof. Suppose F ∈ V with X = Z(F) smooth, and A = Aut(X). Then any small deformation F1 of F
in V defines a smooth hypersurface Z(F1). By Proposition 2.1 in [Zheng 2019], when F1 is sufficiently
close to F, there exists g ∈ PSL(V ) such that gAut(Z(F1))g−1

⊂ Aut(X) = A. Since F1 ∈ V, we have
A ⊂ Aut(Z(F1)); hence A = Aut(Z(F1)). �

2B. Geometric invariant theory for symmetric hypersurfaces. Now we assume that d ≥ 3, k ≥ 2. Given
a symmetry type T = [(A, λ)] satisfying Condition 2.2, let C = {g ∈ SL(V ) | gag−1

= a for all a ∈ A}
and N ={g ∈ SL(V ) | g Ag−1

= A, λ(gag−1)= λ(a) for all a ∈ A} be two reductive subgroups of SL(V ).
For reductivity, see [Luna and Richardson 1979, Lemma 1.1].

Lemma 2.6. There is a natural action of N on V, under which the points in V defining smooth hypersur-
faces are stable.

Proof. For any g ∈ N and F ∈ V, we need to show g(F) ∈ V. For any a ∈ A, we have

a(g(F))= g(g−1ag(F))= g(λ(g−1ag)F)= gλ(a)F = λ(a)g(F),

which implies g(F) ∈ V by definition of V. Therefore, there is a natural action of N on V.
Now take F ∈ V with X = Z(F) smooth. Then Aut(X) is finite by Theorem 2.1. Since the stabilizer

group of F under the action of N is a subgroup of Aut(F), it is also finite. Moreover, NF is closed in
SL(V )F, and the latter is closed in Symd(V ∗) since Z(F) is smooth. Thus NF is closed in Symd(V ∗);
hence also closed in V. We conclude that F is stable under the action of N. �
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Denote Vsm
= {F ∈ V | Z(F) smooth}, by Vss the set of semistable elements in V under the action of N,

and by PVsm , PVss their projectivizations. By Lemma 2.6, we can take F = N\\PVsm to be the GIT
quotient, with the GIT compactification F = N\\PVss . Different representatives of the symmetry type
induce canonically isomorphic GIT-quotients. Define M=SL(V )\\PSymd(V ∗)sm to be the moduli space
of smooth degree d hypersurfaces in P(V ), with the GIT compactification M= SL(V )\\PSymd(V ∗)ss .
We have the following proposition:

Proposition 2.7. There is a natural morphism j :F→M sending [F] ∈F to [F] ∈M for any F ∈ Vsm .
This morphism is finite. When T satisfies Condition 2.3, the morphism j is a normalization of its image.

Proof. Here we use a projective version of the main theorem in [Luna 1975]. See the argument of
Proposition 8 in [Ressayre 2010]. Since A is a finite group, there exists certain symmetric power Syml(V)
on which the A-action is trivial. Consider the SL(V )-action on the coordinate ring

⊕
m Symlm(Symd(V ∗)∗)

of (P(Symd(V ∗)),O(l)). Notice that N is of finite index in the normalizer of A in SL(V ). By the main
theorem in [Luna 1975], we have a finite morphism

j̃ : Spec
((⊕

m

Symlm(V∗)
)N)
→ Spec

((⊕
m

Symlm(Symd(V ∗)∗)
)SL(V ))

sending semistable points to semistable points, and preserving the cone structures. Thus j̃ does not
contract any line; hence descends to a finite morphism j : F→M. The morphism j sends [F] ∈ F to
[F] ∈M for any F ∈ Vsm .

We claim that when T satisfies Condition 2.3, the morphism j is generically injective. Take generically
F1, F2∈V and assume [F1]=[F2] in M. Then there exists g∈SL(V )with g(F1)= F2. By the calculation

g−1ag(F1)= g−1a(F2)= g−1λ(a)F2 = λ(a)F1, (1)

we have that g−1ag ∈SL(V ) is an automorphism of Z(F1). By the genericity of F1, we have A∼=Aut(F1),
which implies that g−1ag ∈ A. Then by equation (1) and F1 ∈ V, we have λ(g−1ag)= λ(a). This implies
that g ∈ N, hence [F1] = [F2] in F. Thus j is generically injective.

Moreover, since F is normal and projective, j is a normalization of its image. �

Let T = [(A, λ)] be a symmetry type satisfying Condition 2.2. Consider the automorphism groups
Aut(F) for all F ∈ Vsm. There exists F ′ ∈ Vsm such that #Aut(F ′) is minimal. Let A′ =Aut(F ′). For any
a ∈ A′, there exists λ′(a) ∈ C with a(F ′)= λ′(a)F ′. Then we have a symmetry type T ′ = [(A′, λ′)]. It is
straightforward that T ≥ T ′, and T ′ satisfies Condition 2.3. Similar as T, we have for T ′ correspondingly
N ′,V ′ and F ′. We have the following proposition:

Proposition 2.8. There exists a natural finite morphism F→ F ′.

Proof. By Proposition 2.7, we have two finite morphisms j : F→M and j ′ : F ′→M, and the latter
one is a normalization of its image. We show that j and j ′ have the same image. We have j ′(F ′)⊂ j (F)
since V ′ ⊂ V. By Proposition 2.1 in [Zheng 2019], when F ′′ ∈ V is sufficiently close to F ′, there exists
g ∈ SL(V ), such that gAut(F ′′)g−1

⊂ Aut(F ′)= A′. By minimality of #A′, we have gAut(F ′′)g−1
= A′.
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This implies that Aut(g(F ′′)) = A′; hence g(F ′′) ∈ V ′. We then have dim( j (F)) ≤ dim( j ′(F ′)). By
irreducibilities of the two images, they are the same.

By universal property of normalization, the morphism j factors through j ′. Therefore, we have naturally
a finite morphism F→ F ′. �

Remark 2.9. The fiber of the finite morphism F → F ′ over [F ′] is naturally bijective to the orbit of
(A, λ) in the set of subdata of (A′, λ′) under the action of N ′.

2C. Universal deformation. We fix a type T = [(A, λ)] satisfying Condition 2.2, and assume d ≥ 3 and
k ≥ 2. Next we use Luna’s étale slice theorem to describe the local structure of F, and construct the
universal family of smooth degree d k-folds of type T. We essentially follow the argument in [Zheng 2019,
Section 2]. For Luna’s étale slice theorem and its proof, see [Luna 1973] or [Vinberg and Popov 1994].

Denote by G the centralizer of A in PSL(V ). Recall that PVsm is the space of smooth degree d k-folds
of symmetry type (A, λ). As a closed subvariety of the affine variety PSymd(V ∗)sm , the variety PVsm

is also affine. There is a natural action of G on PVsm. For any x ∈ PVsm, we denote by Gx the orbit
of x and by Gx the stabilizer of x . By Lemma 2.6, Gx is closed in the affine variety PVsm and Gx is
finite. For a Gx -invariant subvariety S of X containing x , there is an action of Gx on G × S given by
g(h, y)= (hg−1, gy) for any g ∈ Gx , h ∈ G, y ∈ S. We denote by G×Gx S the quotient of G× S by this
action. By Luna’s étale slice theorem, there exists a smooth, locally closed, Gx -invariant subvariety S
containing x , such that

(i) the image of κ : G×Gx S→ PVsm, denoted by U, is Zariski-open and G-invariant,

(ii) the morphism κ : G×Gx S→U is étale,

(iii) the morphism G\\κ : Gx\\S→ G\\U is étale,

(iv) the above two morphisms induce an isomorphism

G×Gx S ∼=U ×
G\\U

Gx\\S. (2)

We can shrink S in the analytic category such that

(v) S is Gx -invariant, contractible and contains x , with U = κ(G×Gx S) a G-invariant open subset of
PVsm,

(vi) the morphism between analytic spaces: Gx\\S→ G\\U is an isomorphism.

From (2), we have an isomorphism between analytic spaces,

G×Gx S ∼=U,

by which we have a principal Gx -bundle G× S→U. In particular, G× S→U is a covering map.

Definition 2.10. For any symmetry type T, we define a category CT
d,k as follows. The objects are families

of degree d k-folds of type T with a specified central fiber. The morphisms are holomorphic maps between
families, sending central fiber to central fiber and compatible with the action of A.
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Proposition 2.11. The family XS of degree d k-folds of type T over S has the following universal property.
For any subfamily XS′ → S′ ⊂ U of degree d k-folds of type T containing a central fiber X ′ with an
isomorphism f : X ′∼= X compatible with the actions of A, we have a unique morphism in the category CT

d,k :

XS′
f̃

−−−→ XSy y
S′ −−−→ S

such that the restriction of f̃ to X ′ is f . Moreover, for any two fibers X1, X2 of XS with an isomorphism
g : X1→ X2 compatible with the actions of A, we can extend g uniquely to a morphism g̃ :XS→XS in CT

d,k .

Proof. The base S′ lies in U and is covered by G×S. Thus we have a unique lifting S′ ↪→G×S, sending x ′

to ( f −1, x). In other words, we have uniquely a morphism f̃ :XS′→XS , which restricts to f on X ′.
Now suppose X1, X2 are two fibers of XS with an isomorphism g : X1 ∼= X2. Denote by x1, x2

the corresponding base points in S. Then (g, x1), (id, x2) ∈ G × S have the same image in U. Since
G× S→U is a principal Gx -bundle, the two pairs (g, x1) and (id, x2) are Gx -equivalent; hence g ∈ Gx .
The proposition follows. �

We have the following lemma, which is used in the proof of Proposition 4.8. Since it holds for general
degree d k-folds, we state and prove it here.

Lemma 2.12. Let
X S×PV

S

be a family of smooth degree d k-folds, with the base S contractible. Suppose there is a group Ã, such that
for all s ∈ S, the fiber Xs admits a biregular action of Ã, with induced actions on H n(Xs,Z) compatible
with respect to the local trivialization. Then there exists an action of Ã on the whole family X → S
inducing on each fiber the existing action.

To prove this, we need another lemma from [Javanpeykar and Loughran 2017, Proposition 2.12;
Matsumura and Monsky 1963]:

Lemma 2.13. For d ≥ 3, k ≥ 2, and a smooth degree d k-fold X, the induced action of Aut(X) on
H k(X,Z) is faithful.

Proof of Lemma 2.12. Without loss of generality, we can assume the action of Ã on each H n(Xs,Z) is
faithful. Take any s ∈ S. By Proposition 2.1 in [Zheng 2019], there is a universal hypersurface family X ′ of
Xs , such that any isomorphism between two fibers (may coincide) of X ′ comes from an automorphism of
the central fiber Xs . There exists an open neighborhood U of s in S, with a unique morphism X |U→X ′.
Then for any s ′ ∈U, the action of Ã on Xs′ is induced by a subgroup Ã′ of Aut(Xs). By Lemma 2.13,
and the compatibility of induced actions of Ã on Xs and Xs′ , we have Ã = Ã′ as subgroups of Aut(Xs).
Therefore, the actions of Ã on fibers of X → S glue to an action of Ã on the whole family. �
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3. Period map for smooth cubic fourfolds

In this section we recall some fundamental facts on the period map for cubic fourfolds, the main references
are [Voisin 1986; Hassett 2000; Looijenga 2009; Laza 2009; 2010].

Take (d, k)= (3, 4). Then we have M the moduli of smooth cubic fourfolds, as a Zariski-open subset
of its GIT compactification M. Let X be a smooth cubic fourfold. We denote by ϕX the intersection
pairing on H 4(X,Z). Then (H 4(X,Z), ϕX ) is an odd unimodular lattice of signature (21, 2). Denote
by ηX the square of the hyperplane class of X. Then H 4

0 (X,Z) := η⊥X is an even lattice of discriminant 3.
Now we define (3,30, η) to be an abstract data isomorphic to (H 4(X,Z), H 4

0 (X,Z), ηX ). This does not
depend on the choice of the cubic fourfold X.

Definition 3.1. A marking of the cubic fourfold X is an isomorphism 8 : H 4(X,Z) ∼= 3 of lattices
sending ηX to η.

Two marked cubic fourfolds (X1,81) and (X2,82) are called equivalent if there exists a linear
isomorphism g : X1→ X2 such that 81 = g∗82. Let Mm be the set of equivalence classes of marked
cubic fourfolds. From [Zheng 2019, Section 3], we have:

Proposition 3.2. The set Mm is a complex manifold in a natural way.

Next we define the period domain and period map for cubic fourfolds. Let

D̃ := P{x ∈ (30)C | ϕ(x, x)= 0, ϕ(x, x) < 0}.

This is an analytically open subset of a quadric hypersurface in P(30)C, and has two connected components.
We have naturally a holomorphic map

P̃ :Mm
→ D̃

sending (X,8) ∈Mm to 8(H 3,1(X)). It is called the local period map for cubic fourfolds.
Let D̂ be one connected component of D̃ and 0̂ be the index 2 subgroup of Aut(3, ϕ, η) which leaves

the component D̂ stable. Then 0̂ is an arithmetic group acting on D̂, and P̃ descends to

P :M→ 0̂\D̂,

which is called the (global) period map for cubic fourfolds.

Remark 3.3. The subgroup 0̂ consists of elements in 0 with spinor norm 1. Since there exist vectors
in 30 with self intersection −2, the group 0̂ is of index 2 in Aut(3, ϕ, η).

The global Torelli theorem was originally proved by Voisin [1986], with an erratum based on some
work by Laza [2009]:

Theorem 3.4 (Voisin). The period map P is an open embedding.

Remark 3.5. In fact, the period map P is algebraic; see the discussion in [Hassett 2000, Proposi-
tion 2.2.3].
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We give a lemma which is constantly used; see [Zheng 2019, Proposition 1.3].

Lemma 3.6. Take X a smooth cubic fourfold. Then Aut(X)∼= Aut(H 4(X,Z), ϕX , ηX , H 3,1(X)).

We have a refined version of Theorem 3.4:

Proposition 3.7 (Voisin, Hassett, Looijenga, Laza). The local period map P̃ :Mm
→ D̃ is an open

embedding, with image being the complement of a hyperplane arrangement invariant under the action of
Aut(3, η) on D̃.

Proof. Combining Theorem 3.4 and Lemma 3.6 we have injectivity. The characterization of the image
of P̃ is due to Looijenga [2009] and Laza [2010, Theorem 1.1], a more precise version is discussed in
Proposition 4.7. �

4. Period maps for symmetric cubic fourfolds

4A. Local period map for symmetric cubic fourfolds. In this section we are going to discuss the local
and global period maps for symmetric cubic fourfolds. Let (d, k) = (3, 4), and fix a symmetry type
T = [(A, λ)] satisfying Condition 2.2. We first introduce the local period domains with actions of
arithmetic groups. Take X = Z(F) for a generic point F ∈ V. Recall that the action of A on X induces an
action of A on H 3,1(X). This action is a character ζ : A→C× with trivial restriction on µk+2. We denote

H 4(X)ζ = {x ∈ H 4(X) | ax = ζ(a)x for all a ∈ A}.

Define a Hermitian form h : H 4(X)ζ × H 4(X)ζ → C by h(x, y) = ϕ(x, y). Denote by σX the action
of A on H 4(X,Z). Let σ be an action of A on 3, making (3, η, σ ) isomorphic to (H 4(X,Z), ηX , σX ).
Denote by 3ζ ⊂30⊗C the ζ -eigenspace of the action of A on (30)C.

Proposition 4.1. The Hermitian form h has signature (n′, 2) if ζ = ζ (this is also equivalent to ζ(A)⊂µ2);
it has signature (n′, 1) otherwise. Here n′ is a nonnegative integer independent of the choice of X.

Proof. Notice that the lattice H 4(X,Z) has signature (21, 2), with negative part H 3,1(X)⊕ H 1,3(X). If
ζ(A) is not contained in µ2, we have ζ 6= ζ . Since H 1,3 lies in ζ -eigenspace, the signature of h is (n′, 1).

For the case ζ(A)⊂µ2, both H 3,1(X) and H 1,3(X) are contained in Hζ ; thus h has signature (n′, 2). �

An isomorphism 8 : (H 4(X,Z), ηX , σX )∼= (3, η, σ ) is called a T-marking of X. We consider pairs
consisting of a smooth cubic fourfold and its T-marking. Two such pairs (X1,81) and (X2,82) are
equivalent if there exists g ∈ G such that 81 = g∗82. Letting Fm be the set of equivalence classes of
such pairs, we have:

Proposition 4.2. The set Fm is naturally a complex manifold.

Proof. First we describe the local charts on Fm. Take a point (X,8)∈Fm, and take a universal deformation
XS→ S of X as in Proposition 2.11. Since S is contractible, the local system R4π∗(Z) is trivializable
over S and the T-marking 8 of X naturally extends to a T-marking for every fiber of XS→ S. Thus we
have a map

α : S→ Fm .
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We first show that α is injective. Suppose X1, X2 are two fibers of XS , with 81,82 the induced
T-markings by 8, such that (X1,81) and (X2,82) represent the same point in Fm. Then there exists
g : X1 ∼= X2 with 82 =81 ◦ g∗. By Proposition 2.11 we have g ∈ Gx and 8=8◦ g∗; hence g∗ = id. By
Lemma 3.6 we have g = id. Thus α is injective.

By definition, Fm is covered by countably many such α(S), and they form a basis of a topology. To
show Fm is a complex manifold, we need to prove that the topology is Hausdorff. Suppose not, then
we have two nonseparated points (X,8), (X ′,8′) ∈ Fm. Then X and X ′ are isomorphic (because F is
separated). Without loss of generality, we assume X ′ = X. Take XS → S the universal family as in
Proposition 2.11, and

α, α′ : S→ Fm

induced by 8 and 8′. Now since (X,8) and (X ′,8′) are nonseparated, we have α(S) ∩ α′(S) 6= ∅.
Thus there exists x1 ∈ S with corresponding cubic fourfold X1, such that the two pairs (X1,8) and
(X1,8

′) represent the same point in Fm. Then there is an automorphism g of X1, such that 8′ =8 ◦ g∗.
Proposition 2.11 implies that g is also an automorphism of X and satisfies the above relation. Thus
(X,8)= (X,8′) in Fm, a contradiction. We showed the Hausdorff property. We conclude that Fm is
naturally a complex manifold. �

Remark 4.3. Proposition 4.2 can be generalized to degree d k-folds (d ≥ 3, k ≥ 2) with specified
automorphism group. The argument is the same.

When h has signature (n′, 1), we define DT =P{x ∈3ζ | ϕ(x, x) < 0}, which is a hyperbolic complex
ball of dimension n′; when h has signature (n′, 2), define DT to be a component of

P{x ∈ (30)ζ | ϕ(x, x)= 0, ϕ(x, x) < 0},

which is a type IV symmetric domain of dimension n′.
We define the local period map for symmetric cubic fourfolds of type T as the map from Fm to

DT tDT , sending (X,8) to 8(H 3,1(X)), still denoted by P̃ . Suppose DT is a type IV domain and Fm

is connected, then we make the choice of DT such that P̃ has image in DT . Actually, the two situations,
Fm being connected or not, both happen. See Proposition 4.9 for a precise argument.

4B. Properties of local period maps for symmetric cubic fourfolds. We need to review basic works by
Laza [2009; 2010]. In [Laza 2009] stable and semistable cubic fourfolds are classified. One of the main
theorems is:

Theorem 4.4 [Laza 2009]. A cubic fourfold with at worst ADE-singularities is stable.

Independently, Looijenga [2009] and Laza [2010] proved that the period map P :M→ 0̂\D̂ extends
to the moduli space M1 of cubic fourfolds with at worst ADE singularities, and characterized its image.
The results are gathered in the following theorem:
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Theorem 4.5 [Laza 2010]. The period map P :M→ 0̂\D̂ has image 0̂\(D̂−H∞−H1), and extends
holomorphically to

P :M1→ 0̂\D̂

with image 0̂\(D̂−H∞). Here H∞,H1 are two 0̂-invariant hyperplane arrangements in D̂, with the
quotients 0̂\H∞ and 0̂\H1 irreducible.

Remark 4.6. This characterization of the image P(M) was conjectured by Hassett [2000]. Hassett
defined the special cubic fourfolds, some of which correspond to polarized K 3 surfaces. The hyperplane
arrangements H1 and H∞ are two particular ones, parametrizing nodal cubic fourfolds and secant lines
of the determinantal cubic fourfold, and corresponding to K 3 surfaces of degree 6 and 2 respectively; see
[Hassett 2000, Sections 4.2 and 4.4].

We have also the following marked version of Theorem 4.5:

Proposition 4.7. The local period map P̃ :Mm
→ D̃ has image D̃−H∞−H1−H∞−H1.

Proof. By Theorem 4.5, the image of P̃ lies in D̃ −H∞ −H1 −H∞ −H1. Take any point x in
D̃−H∞−H1−H∞−H1. By Theorem 4.5 the point [x] ∈ 0̂\(D̂−H∞−H1) lies in the image of
P :M→ 0̂\D̂. Thus the orbit Aut(3, η)x intersects with P̃(Mm). Notice that the set P̃(Mm) is
Aut(3, η)-invariant; hence contains the orbit Aut(3, η)x . We showed the surjectivity. �

For a specified type T, we write D=DT for short. We have a natural embedding DtD ↪→ D̃. Denote
Hs = D∩ (H1 ∪H∞ ∪H1 ∪H∞) and H∗ = D∩ (H∞ ∪H∞). The local period map P̃ : Fm

→ DtD

has image contained in DtD−Hs −Hs .

Proposition 4.8. The local period map P̃ :Fm
→DtD is an open embedding, with image either D−Hs

or DtD−Hs −Hs . In particular, n′ = n.

Proof. We have a closed embedding π : DtD ↪→ D̃. There is a natural map j : Fm
→Mm. Suppose

(X1,81), (X2,82) represent the same point in Mm, then there exists a linear isomorphism g : X1 ∼= X2

such that
g∗ =8−1

1 ◦82 : H 4(X2,Z)→ H 4(X1,Z)

Since 81,82 are compatible with the actions of A on H 4(X1,Z), H 4(X2,Z), so is g∗. Lemma 3.6
implies that g is compatible with the actions of A on X1, X2. Thus (X1,81), (X2,82) represent the
same point in Fm. We showed the injectivity of j.

Combining this with the commutative diagram

Fm DtD

Mm D̃

P̃

j π

P̃

we obtain the injectivity of P̃ : Fm
→ DtD. In particular, n ≤ n′.
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Since the differential of P̃ :Mm
→ D̃ is injective everywhere, so is the differential of P̃ :Fm

→DtD.
Take (X,8) ∈ Fm. Let x = 8(H 3,1(X)) ∈ D tD and y be any point in the component of D tD

containing x . Since both D−Hs and D−Hs are connected, there exists a path

γ : [0, 1] → DtD−Hs −Hs

with γ (0)= x and γ (1)= y. The path γ has a unique lifting in Mm. By Proposition 3.7, we can choose
a family X → [0, 1] of cubic fourfolds, with marking 8 of every fiber, such that (X0,8)= (X,8) and
8(H 3,1(Xs))= γ (s), for all s ∈ [0, 1]. Since γ (s) ∈ DtD, the Hodge structure on H 4(Xs,Z) has an
action of A induced by 8. By Lemma 3.6, there exist actions of A on Xs for any s ∈ [0, 1], inducing
compatible actions on H 4(Xs,Z). By Lemma 2.12, actions of A are of the same type T. Thus we obtain
a lifting of γ in Fm, hence y ∈ P̃(Fm).

If P̃(Fm)⊂D, then P̃(Fm)=D−Hs ; otherwise P̃(Fm) intersects with both D and D, which implies
that P̃(Fm)= DtD−Hs −Hs . �

We introduce an involution on Mm. Take any smooth cubic fourfold X = Z(F), and a marking
8 : H 4(X,Z)→ 3. Let X ′ = Z(F). There exists a homeomorphism τ from X to X ′ given by the
complex conjugation. Let ι be the involution on Mm sending (X,8) to (X ′,8 ◦ τ ∗). Consider a smooth
cubic fourfold X = Z(F) such that F has real coefficients. Then τ is a diffeomorphism of X, and τ ∗ sends
H 3,1(X) to H 1,3(X). Therefore, choosing any marking 8 of X, the points [(X,8)] and [(X,8 ◦ τ ∗)] lie
in different components of Mm. This implies that the involution ι exchanges the two components of Mm.

Next we give criteria on the number of connected components of Fm. For a symmetry type T =[(A, λ)],
we define the complex conjugate T of T to be [( Ã, λ̃)], where Ã is the complex conjugate of A, and
λ̃(a)= λ(a) for all a ∈ Ã. From the definition, the involution ι exchanges the two spaces Fm

T and Fm
T

.

Proposition 4.9. Given a symmetry type T = [(A, λ)]:

(i) If ζ is not real, then Fm is connected.

(ii) If T = T , then Fm has two components.

(iii) If T satisfies Condition 2.3, and T 6= T , then Fm is connected.

Proof. Suppose ζ is not real, then P̃(Fm) lies in the ball attached to (3ζ , h). Thus Fm is connected.
Suppose T = T , then Fm is preserved by ι. Thus Fm has two components.
Suppose Fm has two components, then P̃(Fm)=DtD−Hs −Hs . Thus Fm is preserved by ι. Thus

Fm
T
= Fm

T . This can not happen if T satisfies Condition 2.3 and T 6= T . The third part follows. �

4C. Global period map. In this section we are going to define the global period domain for symmetric
cubic fourfolds of type T as an arithmetic quotient of D, and study the global period map.

Let (d, k) = (3, 4) and fix a symmetry type T = [(A, λ)] satisfying Condition 2.2. Let 0 =
{ρ ∈ 0̂ | ρAρ−1

= A} be the normalizer of A in 0̂. Take ρ ∈ 0̂ and a point x ∈ 3ζ . We claim
that ρx ∈3ζ . In fact, taking any a ∈ A, we have

aρx = ρρ−1aρx = ρζ(ρ−1aρ)x = ζ(ρ−1aρ)ρx .
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Since ρ ∈ 0̂, we have ρ[x] ∈ D̂. The two characters ζ and ρ−1ζρ both give nondefinite eigensubspaces
of 3C. We conclude that ζ = ρ−1ζρ; hence ρx ∈3ζ . This gives a natural action of 0 on D.

Let NA be the normalizer of A in Aut((30)Q, ϕ), which is a reductive algebraic subgroup. The group 0
is an arithmetic subgroup of NA; see the Appendix. The arithmetic quotient 0\D is a quasiprojective
variety thanks to the Baily–Borel compactification (see Section A3 in the Appendix). From our assumption
that the local period map P̃ for Fm takes values in D, we can take (Fm)1 to be the connected component
of Fm such that P̃((Fm)1)= D−Hs . Notice that when Fm is connected, we have (Fm)1 = Fm .

Proposition 4.10. The local period map P̃ : (Fm)1→ D−Hs descends to an algebraic isomorphism
P : F ∼= 0\(D−Hs).

Proof. There are natural analytic morphisms from Fm to F, and D−Hs to 0\(D−Hs). We define
the global period map P : F→ 0\(D−Hs) as follows. Take F ∈ Vsm . We choose a T -marking 8 of
X = Z(F), such that 8(H 3,1(X)) ∈ D (this also means that (F,8) ∈ (Fm)1). We define

P([F])= [P̃(X,8)].

We show this map is well-defined. Take F1, F2 ∈ Vsm with T -markings 81,82 respectively. Suppose
there exists g ∈ N, such that g(F1)= F2. We have an induced map

g∗ : H 4(Z(F2),Z)→ H 4(Z(F1),Z).

Next we show ρ = 81g∗8−1
2 ∈ 0. Denote a′ = gag−1. Since g ∈ N, we have a′ ∈ A. We have the

following commutative diagram:

3 H 4(Z(F2),Z) H 4(Z(F1),Z) 3

3 H 4(Z(F2),Z) H 4(Z(F1),Z) 3

8−1
2

a′

g∗

a′∗

81

a∗ a

8−1
2 g∗ 81

This implies that, as automorphisms of 3, a′ = ρ−1aρ. Thus ρ ∈0. We then have a well-defined analytic
morphism P : F→ 0\(D−Hs).

By definition we have the following commutative diagram:

(Fm)1 D−Hs

F 0\(D−Hs)

P̃

j π

P

(3)

We next show that P : F→ 0\(D−Hs) is an isomorphism.
We first show the injectivity. Suppose that (F1,81), (F2,82) ∈ Fm , with 81(H 3,1(Z(F1))) and

82(H 3,1(Z(F2))) representing the same point in 0\(D − Hs). Then there exists ρ ∈ 0, such that
ρ81(H 3,1(Z(F1)))=82(H 3,1(Z(F2))). The map

8−1
2 ρ81 : H 4(Z(F1),Z)→ H 4(Z(F2),Z)
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preserves the polarized Hodge structures. By Lemma 3.6, we have g ∈ SL(V ), with gF2 equals to F1

after rescaling of F2, and g∗ =8−1
2 ρ81. For any a ∈ A, we have a∗ : H 4(Z(F1),Z)→ H 4(Z(F1),Z).

The g−1ag acts on Z(F2), and this induces

(g−1ag)∗ = g∗a∗g∗−1
= (8−1

2 ρ81)(8
−1
1 a81)(8

−1
1 ρ−182)=8

−1
2 ρaρ−182.

Since ρ ∈ 0, we have ρaρ−1
∈ A. Again by Lemma 3.6, we have g−1ag ∈ A. Since

g−1agF2 = g−1aF1 = λ(a)g−1 F1 = λ(a)F2,

we have λ(g−1ag)= λ(a). We conclude g ∈ N. Thus P is injective.
By Proposition 4.8, the composition of

(Fm)1→ D−Hs→ 0\(D−Hs)

is surjective. By commutativity of diagram (3), the composition of

(Fm)1→ F→ 0\(D−Hs)

is also surjective; hence P : F→ 0\(D−Hs) is surjective.
The algebraicity of P can be deduced from its extension to certain compactifications on both sides;

see Theorem 5.3. An alternative argument follows the proof of Proposition 2.2.3 in [Hassett 2000] using
Baily–Borel compactification and the Borel extension theorem. �

5. Compactifications

In this section we are going to study the compactifications of both two sides of P : F→ 0\(D−Hs).
The essential ingredient is the identification between the GIT compactification of the moduli space of
cubic fourfolds and the Looijenga compactification of the global period domain, proved by Looijenga
[2009] and Laza [2010] independently. Depending on this, we will prove Theorem 1.2(i), and then
deduce Theorem 1.1(iii). In Theorem 5.7 (=Theorem 1.2(ii)), we give a criterion when the Looijenga
compactification is actually Baily–Borel compactification.

Let (d, k)= (3, 4). Recall that from Theorem 4.5 we have the isomorphism P :M1 ∼= 0̂\(D̂−H∞).
From [Looijenga 2009; Laza 2010] we have:

Theorem 5.1 (Looijenga, Laza). The period map P extends to an isomorphism P :M→ 0̂\D̂
H∞

.

Recall that H∗ = D∩ (H∞ ∪H∞), which is a 0-invariant hyperplane arrangement in D. We have a
morphism between locally symmetric varieties

0\D→ Aut(3, η)\D̃∼= 0̂\D̂.

We can construct the Looijenga compactification 0\D
H∗ of 0\(D−H∗) (see the Appendix). From

Theorem A.13, we have:
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Proposition 5.2. There exists a finite morphism π : 0\D
H∗
→ 0̂\D̂

H∞
. If T satisfies Condition 2.3, then

this morphism is a normalization of its image.

We now state our main theorem:

Theorem 5.3. The global period map P : F ∼= 0\(D − Hs) extends to an algebraic isomorphism
P : F ∼= 0\D

H∗ .

We need the following fact in algebraic geometry. We give the proof for the reader’s convenience.

Lemma 5.4. Let f1 : Z1 → Y and f2 : Z2 → Y be finite morphisms between irreducible algebraic
varieties. Suppose Z1, Z2 are normal. Moreover, suppose that there exists Zariski-open subset Ui of Zi ,
i = 1 or 2, with a biholomorphic map g :U1→U2, such that f1 = f2 ◦ g. Then g extends to an algebraic
isomorphism Z1→ Z2.

Proof. Without loss of generality, we assume that Y is affine. Let C(Z) be the field of rational functions on
an irreducible algebraic variety Z , and M(Z) the field of meromorphic functions. We claim g∗C(Z2)=

C(Z1). Let x ∈ C(U2)= C(Z2). Since C(U2) is a finite extension of C(Y ), g∗x is finite over C(U1). We
can find a Zariski-open subset U ◦1 of U1, with a Galois covering Ũ →U ◦1 , such that g∗x ∈ C(Ũ ). Since
g∗x ∈ M(U ◦1 ), it is invariant under the action of Deck transformations. Thus g∗x ∈ C(U ◦1 )= C(Z1). The
claim follows.

The coordinate ring C[Zi ] is the integral closure of C[Y ] in C(Zi ). So g∗C[Z2] = C[Z1]. Thus g
extends to an algebraic isomorphism Z1 ∼= Z2. �

Proof of Theorem 5.3. We have the commutative diagram

F 0\(D−Hs)

F 0\D
H∗

M 0̂\D̂
H∞

∼=

j π

P

(4)

with both j, π finite morphisms. The commutativity is straightforward from the definitions of the maps.
Since F is Zariski-open in F , the image j (F) contains a Zariski-open subset of j (F). Thus j (F) is
the closure of j (F) in M. The same argument shows that π(0\D

H∗
) is the closure of π(0\(D−Hs))

in 0̂\D̂
H∞

. By commutativity of diagram (4), the two images j (F) and π(0\(D−Hs)) are identified
via P, so are j (F) and π(0\D

H∗
). By Propositions 2.7, 5.2 and Lemma 5.4, we have an identification

between F and 0\D
H∗ which extends P : F ∼= 0\(D−Hs). This identification is the extended global

period map P : F ∼= 0\D
H∗ . �
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The proof of the above theorem does not use algebraicity of P. Actually, we can deduce algebraicity
of P from Theorem 5.3. At this point, we have already finished the proof of Theorem 1.1(i), (ii) and
Theorem 1.2(i). In the rest of this section, we prove Theorem 1.1(iii) and Theorem 1.2(ii).

Let V1 be the subset of V consisting of cubic forms of type T defining cubic fourfolds with at worst
ADE-singularities. The points in V1 are stable with respect to the action of SL(V ) on Sym3(V ∗); hence
also stable with respect to the action of N on V. Define F1 = N\\PV1 to be the moduli space of cubic
fourfolds of type T with at worst ADE-singularities. We have:

Proposition 5.5. The period map P : F → 0\(D − Hs) extends to an algebraic isomorphism P :

F1 ∼= 0\(D−H∗).

Proof. From the definition we have j (F1) = j (F)∩M1 and j−1( j (F1)) = F1. From Proposition 2.7,
the morphism j : F1→M1 is finite. On the other hand, we have

π(0\(D−H∗))= π(0\D
H∗
)∩ 0̂\(D̂−H∞)

and
π−1(π(0\(D−H∗)))= 0\(D−H∗).

From Proposition 5.2, the morphism π : 0\(D−H∗)→ 0̂\(D̂−H∞) is finite. By Theorems 4.5 and 5.3,
the two images j (F1) and π(0\(D−H∗)) are identified via P. By Lemma 5.4, we have the algebraic
isomorphism P : F1 ∼= 0\(D−H∗). �

If the hyperplane arrangement H∗ is empty, then the Looijenga compactification of 0\D is actually
the Baily–Borel compactification. Next we give a criterion of emptiness of H∗ from the perspective of
GIT. Following Section 6 of [Laza 2009], there is a rational curve χ parametrizing certain semistable
cubic fourfolds, given by

Fa,b(x0, . . . , x5)=

∣∣∣∣∣∣
x0 x1 x2+ 2ax5

x1 x2− ax5 x3

x2+ 2ax5 x3 x4

∣∣∣∣∣∣+ bx3
5

where (a : b) ∈WP(1 : 3) with WP(1 : 3) the weighted projective space of weight (1 : 3). We denote by
X(a:b) the cubic fourfold defined by Fa,b. Denote

F0(x0, . . . , x4)=

∣∣∣∣∣∣
x0 x1 x2

x1 x2 x3

x2 x3 x4

∣∣∣∣∣∣ ,
then Fa,b(x0, . . . , x5)= F0(x0, . . . , x4)+ ax5(4x1x3− 3x2

2 − x0x4)+ (b− 4a3)x3
5 .

We next define two pairs (G1, λ1) and (G2, λ2) which will be used in Theorem 5.7. Here for i = 1 or 2,
Gi is a subgroup of SL(V ) and λi : Gi → C× is a character of Gi . As we will discuss below, the pairs
(G1, λ1) and (G2, λ2) are essentially symmetries for F1,0 and F0,1 respectively.

The cubic fourfold X(1:0) is called the determinantal cubic fourfold. The singular locus of X(1:0)
is a rational surface. Explicitly, take V3 to be a complex vector space of dimension 3 and denote by
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[y0 : y1 : y2] a homogeneous coordinate for PV3. Consider an embedding PV3 ↪→ PV defined by
[y0 : y1 : y2] 7→ [x0 : · · · : x5] with x0= y2

0 , x1= y0 y1, x2−x5= y2
1 , x0+2x5= y0 y2, x3= y1 y2, x4= y2

2 .
This induces a natural morphism from GL(V3) to GL(V ). The image of PV3 in PV is called the Veronese
surface, and it is the singular locus of X(1:0). Actually the singular cubic fourfold X(1:0) is the secant
variety of the Veronese surface in P5, and the linear automorphism group of X(1:0) can be identified with
PSL(V3). For each g ∈ GL(V3) there is a complex number λ1(g) such that gF1,0 = λ1(g)F1,0. We hence
obtain a character λ1 of GL(V3). By standard theory on general linear group, there exists an integer k
such that λ1(g)= det(g)k for any g ∈GL(V3). To know k, we only need to compute λ1(g) for a special g.
Take g : (y0, y1, y2) 7→ (t y0, y1, y2). Then

g : (x0, x1, x2+ 2x5, x2− x5, x3, x4) 7→ (t2x0, t x1, t (x2+ 2x5), x2− x5, x3, x4).

Thus gF1,0 = t2 F1,0. This implies that λ1(g)= t2
= det(g)2 and we have k = 2. In conclusion, for any

g ∈ GL(V3) we have λ1(g)= det(g)2.
For b 6= 0, the singular locus of the cubic fourfold X(a:b) is a rational curve. Explicitly, take V2

to be a complex vector space of dimension 2 and denote by [y0 : y1] a homogeneous coordinate for
PV2. Let V5 be the subspace of V defined by x5 = 0. Consider an embedding PV2 ↪→ PV5 defined by
[y0 : y1] 7→ [x0 : · · · : x4] with xi = y4−i

0 yi for i = 0, 1, 2, 3, 4. This also induces a natural morphism
from GL(V2) to GL(V ). Then the singular locus of X(a:b) is the image of PV2 ↪→ PV5 ↪→ PV. By
[Laza 2009, Proposition 6.6 and its proof] the linear automorphism group of X(a:b) for a generic choice
(a : b) ∈WP(1 : 3) is PSL(V2). For any g ∈ GL(V2), there exists a complex number λ2(g) such that
gF0 = λ0(g)F0. A similar calculation as before gives λ0(g)= det(g)6.

When (a, b)= (0, 1), we have extra automorphisms of X(a:b) given by taking scalars on x5. Suppose
(g, u)∈GL(V5)×C× is an automorphism of F0,1= F0+x3

5 . Since gF0=det(g)6 F0 and u(x3
0)=u3x3

0 , we
must have det(g)6 = u3. Thus det(g)2/u is a third root of unity. The following definition is then natural:

Definition 5.6. (i) Let G1 be the intersection of SL(V ) with the image of GL(V3)→ GL(V ).

(ii) Let G̃2 be the subgroup of GL(V2)×C∗ consisting of elements (g, u) such that (det g)2/u is a third
root of unity. Let G2 be the intersection of SL(V ) with the image of the natural map G̃2→ GL(V ).

Both G1 and G2 contain the center of SL(V ). The restriction of λ1 to G1 is still denoted by λ1. For G2,
we have a character λ2 : (g, u) 7→ λ0(g)= det(g)6 = u3. The next theorem gives a criterion on emptiness
of H∗. We will apply this criterion to prime-order groups (Proposition 6.5).

Theorem 5.7. For a symmetry type (A, λ) satisfying Condition 2.2, the following three statements are
equivalent:

(i) The hyperplane arrangement H∗ is nonempty.

(ii) The space PVλ intersects with the orbit PSL(V )χ of the rational curve χ in PSym3(V ∗).

(iii) For i = 1 or 2, there exists h ∈ SL(V ) such that h−1 Ah ⊂ Gi and for any a ∈ A we have λ(a) =
λi (h−1ah). If this is satisfied, we say that (A, λ) factors through (Gi , λi ).
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Proof. We first show the equivalence of (i) and (ii). If (ii) holds, the intersection points survive after taking
GIT quotients since the PSL(V ) orbits of points in χ are closed. Conversely, suppose j (F) intersects
with the image of χ at [F] in M. We can always take the representative F in Vλ has closed N -orbit.
According to the main theorem in [Luna 1975], the PSL(V )-orbit of [F] ∈ PSym3(V ∗) is also closed.
So F represents an element in PSL(V )χ .

Secondly we recall that the blow-up and blow-down construction in Looijenga compactification 0̂\D̂
H∞

gives a stratum corresponding to χ . We claim that H∗ is nonempty if and only if the image of 0\D
H∗

in 0̂\D̂
H∞

intersects with the stratum. From the proof of functoriality of semitoric compactification in
Section A4, we know that D6 intersects with H∞ if and only if D intersects with H∞. So the image of
0\D

H∗ intersects with the stratum if and only if D intersects with H∞. By diagram (4), the intersection
of j (F) with the image of χ in M is equivalent to the intersection of the image of π(0\D

H∗
) with the

stratum corresponding to χ . The equivalence of (i) and (ii) follows.
Next we show the equivalence of (ii) and (iii). Suppose (iii) is satisfied, then for i = 1 or 2, there exists

h ∈ GL(V ) such that h−1 Ah ⊂ Gi and λ(a)= λi (h−1ah) for any a ∈ A. Then hF1,0 or hF0,1 lies in Vλ.
This implies (ii).

Suppose (ii) holds. Then there is a member Fa,b in χ , and an element h ∈GL(V ), such that hFa,b ∈ Vλ.
If b = 0 or a = 0, then (A, λ) factors through (G1, λ1) or (G2, λ2). Otherwise, we claim that the
linear automorphism group of X(a:b) is indeed PSL(V2); hence (A, λ) factors through both (G1, λ1) and
(G2, λ2). Let g ∈ GL(V ) be an automorphism of Fa,b. Since the singular locus of Fa,b is the image
PV2 ↪→ PV, the automorphism g fixes PV2 which is the smallest subspace of PV containing the singular
locus. Moreover, g is induced by an element of GL(V2). Since Fa,b(x0, . . . , x5) contains no monomial
with the degree of x5 equal to 2, the action of g on the coordinate x5 is by a scalar. By a 6= 0 we conclude
that g fixes x5. Therefore, the linear automorphism group of X(a:b) is PSL(V2). The discussion above
shows that (ii) and (iii) are equivalent. �

6. Examples and related constructions

In this section we apply our theorems to specific examples. We will first review the classification of prime-
order automorphisms of smooth cubic fourfolds [González-Aguilera and Liendo 2011, Theorem 3.8] in
Section 6A, then in Section 6B we will show how our results recover a main theorem in [Laza et al. 2018].

6A. Prime-order automorphisms of smooth cubic fourfolds. The classification of prime-order automor-
phisms of smooth cubic fourfolds was given in [González-Aguilera and Liendo 2011, Theorem 3.8]. For
the reader’s convenience we present the result in this section. (There was a small mistake in [González-
Aguilera and Liendo 2011, Theorem 3.8]. The second example with p = 5 contains only singular cubic
fourfolds. This is pointed out in [Boissière et al. 2016, Remark 6.3]).

Proposition 6.1 [González-Aguilera and Liendo 2011]. Let ω be a prime p-th root of unity and ρ =
(m0, . . . ,m5) be the automorphism of V ∼= C6 given by (x0, . . . , x5) 7→ (ωm0 x0, . . . , ω

m5 x5). The list of
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smooth cubic polynomials F preserved by the action under ρ is as follows:

T 1
2 : ρ = (0, 0, 0, 0, 0, 1), n = 14, F = L3(x0, . . . , x4)+ x2

5 L1(x0, . . . , x4).

T 2
2 : ρ = (0, 0, 0, 0, 1, 1), n = 12,

F = L3(x0, . . . , x3)+ x2
4 L1(x0, . . . , x3)+ x4x5 M1(x0, . . . , x3)+ x2

5 N1(x0, . . . , x3).

T 3
2 : ρ = (0, 0, 0, 1, 1, 1), n = 10,

F = L3(x0, x1, x2)+ x0L2(x3, x4, x5)+ x1 M2(x3, x4, x5)+ x2 N2(x3, x4, x5).

T 1
3 : ρ = (0, 0, 0, 0, 0, 1), n = 10, F = L3(x0, . . . , x4)+ x3

5 .

T 2
3 : ρ = (0, 0, 0, 0, 1, 1), n = 4, F = L3(x0, . . . , x3)+M3(x4, x5).

T 3
3 : ρ = (0, 0, 0, 0, 1, 2), n = 8, F = L3(x0, . . . , x3)+ x3

4 + x3
5 + x4x5 M1(x0, . . . , x3).

T 4
3 : ρ = (0, 0, 0, 1, 1, 1), n = 2, F = L3(x0, x1, x2)+M3(x3, x4, x5).

T 5
3 : ρ = (0, 0, 0, 1, 1, 2), n = 7,

F = L3(x0, x1, x2)+M3(x3, x4)+ x3
5 + x3x5L1(x0, x1, x2)+ x4x5 M1(x0, x1, x2).

T 6
3 : ρ = (0, 0, 1, 1, 2, 2), n = 8,

F = L3(x0, x1)+M3(x2, x3)+ N3(x4, x5)+
∑

i=1,2; j=3,4;k=5,6

ai jk xi x j xk .

T 7
3 : ρ = (0, 0, 1, 1, 2, 2), n = 6,

F = x2L2(x0, x1)+ x3 M2(x0, x1)+ x2
4 L1(x0, x1)

+x4x5 M1(x0, x1)+ x2
5 N1(x0, x1)+ x4 N2(x2, x3)+ x5O2(x2, x3).

T 1
5 : ρ = (0, 0, 1, 2, 3, 4), n = 4,

F = L3(x0, x1)+ x2x5L1(x0, x1)+ x3x4 M1(x0, x1)+ x2
2 x4+ x2x2

3 + x3x2
5 + x2

4 x5.

T 1
7 : ρ= (1, 2, 3, 4, 5, 6), n= 2, F = x2

0 x4+x2
1 x2+x0x2

2+x2
3 x5+x3x2

4+x1x2
5+ax0x1x3+bx2x4x5

T 1
11 : ρ = (0, 1, 3, 4, 5, 9), n = 0, F = x3

0 + x2
1 x5+ x2

2 x4+ x2x2
3 + x1x2

4 + x3x2
5 .

Here the lower index is the prime p, the polynomials L i ,Mi , Ni are of degree i , and n is the dimension of
the corresponding GIT-quotient.

Remark 6.2. This classification offers 13 symmetry types with #A a prime number 2, 3, 5, 7 or 11. Those
symmetry types may not satisfy Condition 2.3. See previous discussion in Remark 2.4.

By Griffiths residue calculus [1969a; 1969b], for a smooth cubic fourfold X = Z(F), the complex
line H 3,1(X) is generated by ResX (�/F2). Here �=65

i=0(−1)i xi dx1∧· · ·∧ d̂xi ∧· · ·∧dx5. By direct
calculation, we have:

Proposition 6.3. (i) For type T = T 2
2 , T 3

3 , T 4
3 , T 6

3 , T 1
5 , T 1

7 , T 1
11, we have ζ = 1.

(ii) For type T = T 1
2 , T 3

2 , we have ζ =−1

(iii) For type T = T 1
3 , T 2

3 , T 5
3 , T 7

3 , we have that ζ(ρ) is equal to ω or ω.

We already proved that P(Fm) is either D−Hs or DtD−Hs −Hs . From Proposition 4.9, we have:
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Proposition 6.4. (i) If T = T 1
3 , T 2

3 , T 5
3 , T 7

3 , then D is a complex hyperbolic ball and P̃(Fm)=D−Hs .

(ii) If T = T 1
2 , T 2

2 , T 3
2 , T 3

3 , T 4
3 , T 6

3 or T 1
7 , then D is a type IV domain and P̃(Fm)= DtD−Hs −Hs .

Now we apply Theorem 5.7 for prime-order cases.

Proposition 6.5. For T = T 1
2 , T 3

2 , T 2
3 , T 3

3 , T 4
3 , T 7

3 , T 1
11, we obtain isomorphisms between GIT compactifi-

cations F with Baily–Borel compactifications 0\D
bb

. For T = T 2
2 , T 1

3 , T 5
3 , T 6

3 , T 1
5 , T 1

7 , the corresponding
Looijenga compactifications are not Baily–Borel compactifications.

Proof. We do the calculation for p= 2 and 3; the other cases are similar. Suppose p= 2. If (A, λ) factors
through (G1, λ1), a generator of A corresponds (up to conjugate) to g = diag(1, 1,−1) ∈ GL(V3) with
order 2. The image of g in GL(V ) is diag(1, 1, 1, 1,−1,−1). If (A, λ) factors through (G2, λ2), then we
take (g, u) ∈GL(V2)×C∗ such that g= diag(1,−1) and u is a third root of unity. The image of (g, u) in
GL(V ) is diag(1, 1, 1, 1,−1,−1). In both two cases, we obtain diag(1, 1, 1, 1,−1,−1)∈ SL(V ) and the
values of both λ1 and λ2 are equal to 1. By Theorem 5.7, the symmetry type T 2

2 does not give Baily–Borel
compactification and T 1

2 , T 3
2 give Baily–Borel compactifications.

Suppose p = 3. If (A, λ) factors through (G1, λ1), then a generator of A corresponds to g =
diag(1, 1, ω) ∈ GL(V3) with order 3. The image of g in GL(V ) is diag(1, 1, 1, ω, ω, ω2), with value
of λ1 equal to det(g)2 = ω2. If (A, λ) factors through (G2, λ2), then we take (g, u) ∈ GL(V2)× C×

with g = diag(1, ω) or diag(1, 1), and u a third root of unity. The image of (g, u) in GL(V ) is
diag(1, 1, ω, ω, ω2, u) or diag(1, 1, 1, 1, 1, u). For these elements, the values of λ2 equal to u3

= 1. We
conclude that for T 1

3 , T 5
3 , T 6

3 we do not obtain Baily–Borel compactification, and for other T i
3 we do. �

Remark 6.6. Notice that Proposition 6.5 is compatible with results in previous literature. For T = T 1
2 , we

have H∗ is empty and we obtain Baily–Borel compactification. This is proved in [Laza et al. 2018] via a
lattice-theoretic argument. For T = T 1

3 , the arrangement H∗ is not empty and we do not obtain Baily–Borel
compactification. This coincides with the work in [Looijenga and Swierstra 2007; Allcock et al. 2011].

Remark 6.7. Notice that for the symmetry type T 1
7 , the hyperplane arrangement H∗ is nonempty and the

dimension of each member is 1. This is one of the examples in which the approach adopted in previous
works does not apply; see the discussion right after Theorem 1.2.

6B. Examples revisit. Take T = T 1
3 . Then T = [(A = µ3, λ= 1)] satisfies Condition 2.3. The space F

can be identified with the moduli space of smooth cubic threefolds. The local period domain D is a
complex hyperbolic ball of dimension 10 with an action of an arithmetic group 0. Then Theorems 1.1
and 1.2 recover the main results in [Looijenga and Swierstra 2007; Allcock et al. 2011]. By Proposition 6.5,
the hyperplane arrangement H∗ is nonempty. Actually, from [Looijenga and Swierstra 2007; Allcock
et al. 2011], the quotients 0\Hs has two irreducible components, and 0\H∗ is irreducible.

Take T = T 1
2 . Then T = [(A = µ2, λ= 1)] satisfies Condition 2.3. In this case, the moduli space F

turns out to be the moduli space of pairs consisting of a cubic threefold and a hyperplane section.
This was recently studied in [Laza et al. 2018]. Denote by W1 = H 0(P4,O(3)) the space of cubic
forms in x0, . . . , x4 and by W2 = H 0(P4,O(1)) the space of linear forms in x0, . . . , x4. We have
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an identification W1 ⊕W2 ∼= V sending (L3, L1) to L3 + x2
5 L1. In [Laza et al. 2018], the authors

defined F to be a GIT-quotient of (PW1×PW2,O(3)�O(1)) by SL(5,C). Direct calculation shows
that N = C = SL(5,C)× Z ⊂ SL(V ), where Z = {diag(u, u, u, u, u, u−5) | u ∈ C×} is the center. The
following proposition gives the relation of our constructions with that in [Laza et al. 2018]:

Proposition 6.8. We have identification between polarized projective varieties:

Z\\(PV,O(1))∼= (PW1×PW2,O(3)�O(1)).

Proof. It is equivalent to show⊕
k

(H 0(PV,O(k)))Z ∼=
⊕

k

H 0(PW1×PW2,O(3k)�O(k))

as graded algebras. The action of Z on W1 has weight 3, and on W2 weight −9.
We have the direct sum decomposition

Symm(V∗)=
⊕

k+l=m

SymkW∗1 ⊗SymlW∗2

with Z -action of weight−3k+9l. The weight zero part has k= 3l and m= 4l. So we obtain identification
between the two polarized varieties. �

Moreover, by Proposition 6.5, the hyperplane arrangement H∗ is empty in this case, and we obtain
identification between F and Baily–Borel compactification 0\D

bb
. It is straightforward to see that the

arithmetic group 0 is exactly the one used in [Laza et al. 2018]. Therefore, we recover the main result in
[Laza et al. 2018].

Appendix: Locally symmetric varieties and Looijenga compactifications

It is well-known that the normalization of each stratum in the orbifold loci of a locally Hermitian symmetric
variety is still a locally Hermitian symmetric variety. For the reader’s convenience, we include a discussion
of this fact in Section A1. In the rest of the appendix, we prove that a similar result (Theorem A.13)
holds for Looijenga compactifications. This is first observed by Looijenga [2016, p. 72]. We provide the
complete formalism and the details of the proof.

We will recall the construction of Looijenga compactifications [2003a; 2003b] of arithmetic quotients X

of complex hyperbolic balls or type IV domains. There are two steps. The first is constructing the
semitoric blowup X

6
, which is an intermediate compactification of arithmetic quotient X sitting between

Baily–Borel and toroidal compactifications. We will recall the geometric construction of Baily–Borel
compactifications of complex hyperbolic balls and type IV domains in Section A3, and recall the semitoric
blow-up construction in Section A4. The second step is taking successive blow-up constructions along
the hyperplane arrangement in X

6
and blow-down constructions of certain induced strata (we will sketch

this in Section A5).
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The idea of the proof of Theorem A.13 is that natural morphisms between arithmetic quotients (of balls
or type IV domains) can be extended to morphisms between Baily–Borel compactifications, semitoric
compactifications and Looijenga compactifications. Moreover, the extensions are finite morphisms. We
call this the functorial property. We will prove the functorial property for Baily–Borel compactification
in Section A3, for semitoric compactifications in Section A4, and for Looijenga compactification in
Section A5. The existence of the extension in the Baily–Borel case is done in [Kiernan and Kobayashi
1972]. Harris [1989] proved the functorial properties for toroidal compactifications of locally symmetric
varieties. The other part of our results in Sections A3, A4, A5, up to our knowledge, are new. Our proof
follows the same idea in [Harris 1989]. We need to verify that the combinatorial data associated with the
ambient hyperplane arrangements induces the same type of combinatorial data for subspaces, and match
each stratum accordingly.

A1. Orbifold loci of locally symmetric varieties. In this section we show the normalization of an orbifold
stratum of a locally Hermitian symmetric variety is again a locally Hermitian symmetric variety.

Let G be a real reductive algebraic group with compact center. Let K be a maximal compact subgroup
of G. Let D= G/K be the corresponding symmetric space. Assume D is Hermitian symmetric and G
has a Q-structure. Let 0 ⊂ G(Q) be an arithmetic subgroup. For simplicity, we assume the action of 0
on D is faithful. Denote by X = 0\D the arithmetic quotient. This is naturally a quasiprojective variety
due to Baily–Borel compactification [1966]. There is a natural orbifold structure on X. We consider the
orbifold locus indexed by certain finite subgroup A ⊂ 0. More precisely, we take A ⊂ 0 fixing some
point x ∈ D. Without loss of generality, we assume K to be the stabilizer of x ∈D under the action of G.
Then A⊂ K. Denote by G A, K A and 0A the corresponding normalizers of A in G, K and 0, respectively.
Then G A is again a real reductive algebraic group with compact center and K A is a maximal compact
subgroup (see [Looijenga 2016, pp. 37–38]). There is a natural holomorphic embedding

G A/K A ↪→ D= G/K .

Define DA := G A/K A. This is a Hermitian symmetric subspace of D. We have the following proposition:

Proposition A.1. The group 0A is an arithmetic subgroup in G A(Q) and the map π : 0A\DA→ 0\D is
finite. Furthermore, if A is the stabilizer of x under the action of 0, then this map gives a normalization
of its image.

Proof. Due to the extension theorem of Baily–Borel compactifications (see Theorem 2 in [Kiernan and
Kobayashi 1972]), the map π is algebraic and proper. We show π is finite. It suffices to show π is
quasifinite, namely, having finite fibers. Take any y ∈ DA. Suppose we have a point y′ = ρy for ρ ∈ 0.
Then ρ−1 Aρ is contained in the stabilizer group of y. Actually, the 0A-orbits of such points y′ are
one-to-one corresponding to subgroups with form ρ−1 Aρ in the stabilizer group of y, hence finitely many.

If A is the stabilizer group of x , a generic point in XA := 0A\DA also has A as stabilizer group. We
first show that π is generically injective in this case. Take generically x1, x2 ∈ DA, and assume they
[x1] = [x2] in 0\D. Then there exists ρ ∈0 such that ρx1= x2. Since both x1, x2 have stabilizer group A,
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we have ρAρ−1
= A; hence ρ ∈ 0A. This implies that [x1] = [x2] in 0A\DA. We have π a finite and

birational morphism from a normal variety to its image, hence a normalization of its image. �

Remark A.2. The same construction also works for any finite volume locally Hermitian symmetric
varieties. The difference from the arithmetic case is that 0A is not automatically a lattice. We need to
use the compactification in finite volume case (see Theorem 1 in [Mok and Zhong 1989]) to show that
the orbifold locus also admits a compactification, which implies the finiteness of the volume by Yau’s
Schwarz lemma [1978].

A2. Orbifold loci of ball and type IV quotients. We now focus on arithmetic quotients of balls and
type IV domains.

We fix some notation that will be used in the rest of the appendix. Let (VQ, ϕ) be a vector space over Q

with nondegenerate rational bilinear form ϕ of signature (2, N ). Let V = VQ⊗C. Notice that here VQ is
not necessarily the middle cohomology of cubic fourfold. Similar to Section 3, the type IV domain D̂

attached to (VQ, ϕ) is a component of

D̂t D̂= P{x ∈ V | ϕ(x, x)= 0, ϕ(x, x) > 0}.

Denote by Ĝ the subgroup of Aut(ϕ)(R) (of index 2) respecting the component D̂. Let 0̂ ⊂ Ĝ be an
arithmetic subgroup. The corresponding locally Hermitian symmetric variety is X̂ = 0̂\D̂. Let A be
a finite subgroup of 0̂. Let ζ be a character of A, such that there exists x ∈ V with ϕ(x, x) = 0 and
ϕ(x, x) > 0, and a(x)= ζ(a)x for all a ∈ A. Denote by Vζ the ζ -subspace of V. Then there is a natural
Hermitian form h on Vζ defined by h(x, y)= ϕ(x, y). If ζ = ζ , this Hermitian form has signature (2, n)
and we obtain a type IV subdomain D of D̂. Otherwise the signature is (1, n) and we obtain a complex
hyperbolic ball B inside D̂. Indeed, let

G := {g ∈ Ĝ | g Ag−1
= A}

be an algebraic subgroup over Q. The fixed locus of A in D is G(R)/K, where K is maximal compact
subgroup of G(R). Denote 0= {ρ ∈ 0̂ | ρ−1 Aρ = A}. As in Section 4, we have 0 an arithmetic subgroup
of G(Q) acting on B or D. Then we have a natural map 0\D→ 0̂\D̂ or 0\B→ 0̂\D̂. We consider the
following condition:

Condition A.3. The group A is the stabilizer of a generic point of D or B.

If A satisfies this condition, Proposition A.1 implies that the morphism π : 0\B → 0̂\D̂ or π :
0\D→ 0̂\D̂ is the normalization of its image.

We will consider a larger set of type IV subdomains. Taking WQ to be a Q-subspace of VQ with
signature (2, n), we have the associated type IV subdomain D inside D̂ with the action of an arithmetic
group 0W = {ρ ∈ 0̂ | ρ(W )=W }. Take VZ to be an integral structure on VQ such that 0 ⊂ Aut(VZ) has
finite index. Denote WZ :=WQ ∩ VZ. For x ∈ D, define Pic(x) := V 1,1

x ∩ VZ to be the Picard lattice of x
where x is viewed as a weight two Hodge structure on VZ. Then for generic x ∈D, we have Pic(x)=W⊥Z .

We have the following lemma:
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Lemma A.4. For A satisfying Condition A.3 and W = Vζ , we have 0A = 0W .

Proof. It is straightforward that 0A ⊂ 0W , and they both act on D. Take any ρ ∈ 0W and a generic point x
in D. Then A is contained in the stabilizer group of ρx . Thus both A and ρ−1 Aρ are contained in the
stabilizer group of x . Since x is generic, we have ρ−1 Aρ = A by Condition A.3. So ρ ∈ 0A. We showed
that 0W ⊂ 0A. �

With this lemma, we will simply denote by 0 the arithmetic group acting on D. We have:

Proposition A.5. For any Q-subspace WQ (of VQ) with signature (2, n), we have a morphism π :

0\D→ 0̂\D̂, which is the normalization of its image.

Proof. Properness is by [Kiernan and Kobayashi 1972]. Take a generic point x in D. Suppose ρ ∈ 0̂
sends x to ρx ∈ D. The Picard lattice Pic(ρx) of ρx contains W⊥Z ; hence ρ−1(W⊥Z )⊂ Pic(x). Since x is
generic, we have Pic(x)=W⊥Z . This implies that ρ(W⊥Z )=W⊥Z ; hence ρ(W )=W. Thus ρ ∈ 0W .

Finally, we show finiteness. Take a point x ∈ D. For any ρ ∈ 0̂, we have ρ−1(W⊥Z ) contained in the
Picard lattice Pic(x). The set 0̂x is a disjoint union of some 0-orbits, each of which corresponds to the
image of certain primitive embedding of W⊥Z into Pic(x). The orthogonal complement of W⊥Z in Pic(x)
is positive definite with discriminant at most det(W⊥Z )det(Pic(x)). By reduction theory of lattice, there
are finitely many such primitive embeddings. �

A3. Functoriality of Baily–Borel compactification. In this section we recall Baily–Borel compactifica-
tions of arithmetic quotients of complex hyperbolic balls or type IV domains; see [Baily and Borel 1966;
Looijenga 2003a; 2003b].

We deal with type IV domain D̂ first. The boundary components of Baily–Borel compactifications
corresponds to Q-isotropic planes J or Q-isotropic lines I. Let

πJ⊥ : P(V )−P(J⊥)→ P(V/J⊥) and πI⊥ : P(V )−P(I⊥)→ P(V/I⊥)

be the natural projections. The image πJ⊥D̂ is isomorphic to upper half plane. The image πI⊥D̂ is a point.
Adding rational boundary components, we have

D̂bb
:= D̂t

∐
J

πJ⊥D̂t
∐

I

πI⊥D̂

with suitable topology and ringed space structure. The Baily–Borel compactification is the quotient
0\D̂bb as a projective variety.

Given WQ ⊂ VQ with signature (2, n). Let D be the corresponding type IV domain. We have a natural
map from D to D̂, inducing 0\D→ 0̂\D̂. According to Theorem 2 in [Kiernan and Kobayashi 1972],
this holomorphic map can be extended to Baily–Borel compactifications, sending boundary components
into boundary components.

Proposition A.6 (type IV to type IV). There is a natural finite extension of π :0\D→ 0̂\D̂ to Baily–Borel
compactifications

π : 0\D
bb
→ 0̂\D̂

bb
.

If A satisfies Condition A.3, the map is a normalization of its image.
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Proof. Let W := Vζ in this proof. The boundary components of Dbb correspond to rational isotropic
planes J and rational isotropic lines I in W. From the natural embedding W ↪→ V, they also have
associated boundary components in D̂bb. Under the natural commutative diagram

P(W )−P(J⊥) P(W/J⊥)

P(V )−P(J⊥) P(V/J⊥)

πJ⊥

πJ⊥

we have isomorphisms πJ⊥D→ πJ⊥D̂, and similar maps πI⊥D→ πI⊥D̂, which induce an extension
Dbb
→ D̂bb equivariant under the action of 0→ 0̂. After taking quotients, we have an extension map

Xbb
→ X̂bb. By Proposition A.1, this map is generically injective and it is finite over 0̂\D̂. Let 0J be

the stabilizer of J under the action of 0. The projection of 0 in GL(J ) (or equivalently GL(V/J⊥))
is arithmetic. The boundary component corresponding to J is the quotient of πJ⊥D̂ by 0J , hence a
modular curve. The restriction to the boundary component corresponding to each J is a nonconstant map
between modular curves, hence finite. The restriction to boundary components corresponding to each I
is automatically finite. So we have an algebraic finite morphism between normal varieties Xbb

→ X̂bb.
If A satisfies Condition A.3, then this morphism is generically injective by Proposition A.1, hence a
normalization of its image. �

We recall the Baily–Borel compactification of Ball quotient. Let K be a CM field and WK a finite-
dimensional vector space over K with

hK :WK ×WK → K

a K -valued Hermitian form. For each embedding ι : K ↪→ C, we define Wι :=WK ⊗ι C, then we have a
Hermitian form hι :Wι×Wι→ C. Assume the form hι has signature (1, n) under embedding ι= ι1 or ι1,
and is definite otherwise. The complex ball B is defined to be the set of positive lines in Wι1 . The
boundary components of Baily–Borel compactification correspond to K -isotropic lines I in WK and we
denote Bbb

:= Bt
∐

I πI⊥B. When the totally real part of K is not Q, there exists complex embedding ι
such that (Wι, hι) is definite, which implies that any isotropic vector in WK must be zero. Thus in this
case the boundary set is empty.

Now consider the action of A on V with ζ 6= ζ . Let K be the cyclotomic field generated by ζ(A).
Take WK to be the ζ -eigenspace of VK := VQ⊗ K under the action of A.

Lemma A.7. The K -vector space WK is isotropic under ϕ.

Proof. Taking any x, y ∈WK , we need to show ϕ(x, y)= 0. Take a ∈ A such that ζ(a) is not real. Then
ζ(a)2 6= 1. By

ϕ(x, y)= ϕ(ax, ay)= ϕ(ζ(a)x, ζ(a)y)= ζ(a)2ϕ(x, y),

we have ϕ(x, y)= 0. �
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There is a natural Hermitian form h of signature (1, n) on WK , given by h(x, y) = ϕ(x, y) for all
x, y ∈WK . The Galois conjugates of K define eigenspaces of V under the action of A. The sum of all
those eigenspaces is a subspace of V defined over Q. Then we have the ball B consisting of positive lines
in W and we denote (0\B)

bb
:= 0\Bbb the Baily–Borel compactification of X = 0\B.

Proposition A.8 (ball to type IV). There is a natural finite extension of π : 0\B→ 0̂\D̂ to Baily–Borel
compactifications

π : 0\B
bb
→ 0̂\D̂

bb
.

If A satisfies Condition A.3, the map is a normalization of its image.

Proof. Similar as the proof for type IV case, we need to identify the boundary components on both sides.
The ball and its boundaries are defined as above by WK . If K is not a quadratic extension of Q, then
the boundary set is empty; hence 0\B is already compact. If K is, then each K -isotropic line I together
with its complex conjugate I defines a rational isotropic plane in VQ. So there is a natural extension map
Bbb
→ D̂bb which is equivariant under the action of 0→ 0̂. After taking quotient on both sides, we have

a finite algebraic map π : Xbb
→ X̂bb. If A satisfies Condition A.3, then this morphism is generically

injective by Proposition A.1, hence a normalization of its image. �

Remark A.9. Similar constructions of ball quotients appears in the arithmetic examples of Deligne–
Mostow theory; see [Deligne and Mostow 1986; Looijenga 2007]. In both constructions, if the cyclotomic
field generated by the corresponding characters is not Q(

√
−1) or Q(

√
−3), then the Baily–Borel

compactification is compact.

A4. Functoriality of semitoric compactifications. We first briefly sketch the semitoric blow-up construc-
tions of complex hyperbolic balls and type IV domains with respect to certain hyperplane arrangements;
see [Looijenga 2003a; 2003b]. Semitoric compactification with respect to a hyperplane arrangement
is the minimal blowup of certain boundary components in Baily–Borel compactification, such that the
closure of every hypersurface is Cartier at the boundary.

Let Ĥ be a hyperplane arrangement on D̂ defined by a set of negative vectors v ∈ VQ, which form
finitely many orbits under the action of 0̂. We recall some definitions and notation in [Looijenga 2003b].
Each rational isotropic line I in VQ realizes D̂ as a tube domain, with real cone denoted by

C I ⊂ (I⊥/I ⊗ I )(R).

Each rational isotropic plane J determines a half line on the boundaries of the C I for any I ⊂ J. The
union of these cones is called the conical locus of D̂. Let C I,+ be the convex hull of C I ∩ (I⊥/I ⊗ I )(Q),
which is the union of C I with rational isotropic half lines corresponding to J containing I. The hyperplane
arrangement Ĥ determines an admissible decomposition 6(Ĥ) of the conical locus. More precisely, it is
a 0-invariant choice of locally rational cone decomposition of C I,+ such that the support for isotropic
half line corresponding to J is independent of those I ⊂ J ; see Section 6 of [Looijenga 2003b] for details.
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For each member σ of 6(Ĥ) contained in C I,+, we define a corresponding vector subspace Vσ of V as
follows. When σ is the half line corresponding to an isotropic plane J, then

Vσ :=
(⋂

J⊂H

H
)
∩ J⊥.

Otherwise Vσ is the span of σ in I⊥, which is also the intersection among I⊥ and those H ∈ Ĥ
containing I. Here we identify H ⊂ V with H ∈ Ĥ. We have a projection πσ : D→ P(V/Vσ ). The
semitoric compactification is denoted by X

6
= 0\D6. Here D6

:=
∐
σ∈6 πσ D̂. The space X

6
has a

natural map to X̂bb respecting the stratifications. We have two different types of boundary components.
One is finite quotient of an abelian torsor over the modular curve 0̂J\πJ⊥ D̂. The abelian torsor is
modeled over vector group J⊥/Vσ quotient by a lattice. The other is an algebraic torus torsor over a
point πI⊥ D̂, which is the boundary stratum in the quotient of an infinite-type toric variety induced by the
cone decomposition of C I,+. In particular, each cone of codimension k corresponds to algebraic torus
torsor of dimension k.

Given WQ ⊂ VQ a sublattice of signature (2, n), with D the associated type IV domain, we have the
intersection H := D∩ Ĥ a 0-invariant hyperplane arrangement in D. We also have the semitoric blowup
of D with respect to H.

Theorem A.10 (type IV to type IV). There is a natural finite extension of π : 0\D→ 0̂\D̂ to semitoric
compactifications

π : 0\D
6(H)
→ 0̂\D̂

6(Ĥ)
.

If A satisfies Condition A.3, the map is a normalization of its image.

Proof. We first show the existence of π : 0\D
6(H)
→ 0̂\D̂

6(Ĥ)
as a morphism between two projective

varieties, then prove finiteness.
The subdomain is induced by (W, ϕ). The isotropic lines and planes in W are naturally viewed as

boundary data of both D and D̂. The conical locus of D is naturally embedded into that of D̂.
Suppose σ ∈6(H) does not correspond to a rational isotropic plane of W. Then we have a rational

isotropic line I, such that σ is contained in C I,W,+ and intersects with C I,W . For each H containing I, the
intersection H∩C I,W being not empty is equivalent to H∩D being not empty. Then there exists τ ∈6(Ĥ)
such that σ = τ ∩W . We denote by σ̂ the minimal element among all such τ . Thus σ = C I,W ∩ σ̂ , which
implies Wσ = Vσ̂ ∩W.

Let σ ∈6(H) correspond to an isotropic plane J contained in both W and a hyperplane H. Suppose
v is a normal vector of H and v = w+w⊥ the decomposition in V = W ⊕W⊥. We have ϕ(v, v) < 0.
The hyperplane H intersects with D if and only if ϕ(w,w) < 0. Since the orthogonal complement of w
in WQ contains the isotropic plane J, we have either ϕ(w,w)< 0 or ϕ(w,w)= 0. Suppose the latter case
happens, then w ∈ J since otherwise 〈J, w〉 is an isotropic subspace of rank 3 contained in WQ, which
is impossible. Thus in this case H ⊃ J⊥ ∩W. The above argument holds for any H ∈H containing σ ;
hence Wσ = Vσ ∩W . In this case we also denote σ̂ = σ .
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For σ = {0} ∈ 6(H), just take σ̂ = {0} ∈ 6(Ĥ). Then for every σ ∈ 6(H), we have a natural
holomorphic map πσD→ πσ̂ D̂ which is apparently injective. Taking union among σ , we have∐

σ∈6(H)

πσD→
∐

σ∈6(H)

πσ̂ D̂ ↪→
∐

τ∈6(Ĥ)

πτ D̂

with the composition continuous. After taking quotients by the equivariant actions on both sides, we
obtain a finite map between the boundary components. Actually, for those rational isotropic planes J,
we obtain finite morphisms between Abelian torsors; for those rational isotropic lines I, we obtain finite
morphisms between algebraic torus torsors. If A satisfies Condition A.3, then π is generically injective
by Proposition A.1, hence a normalization of its image. �

Remark A.11. The injectivity of
∐
σ∈6(H) πσD→

∐
τ∈6(Ĥ) πτ D̂ is already known by [Looijenga 2003b,

paragraph after Lemma 7.1].

For ζ 6= ζ , we have ball B attached to W = Vζ . We next describe the semitoric compactification of B

with respect to H. Here we identify elements in H with hypersurfaces in W. The cusp points correspond
to isotropic lines I in WK . Let

j (I )=
( ⋂

H∈H,H⊃I

H
)
∩ I⊥W

and πI : P(W )−P( j (I ))→ P(W/j (I )). Define

X
j
= 0\

(
Bt

∐
I

π j (I )B
)
.

It naturally maps to the Baily–Borel compactification. The boundary component over each cusp point is
an abelian torsor modeled over the vector space I⊥W/j (I ) quotient by a lattice.

Theorem A.12 (ball to type IV). There is a natural finite extension of π : 0\B→ 0̂\D̂ to semitoric
compactifications

π : 0\B
j
→ 0̂\D̂

6(Ĥ)
.

If A satisfies Condition A.3, the map is a normalization of its image.

Proof. If K is not a quadratic extension of Q, then X is compact and the theorem holds. Now assume
that K is a quadratic extension of Q. Namely, K = Q(

√
−D) for certain positive integer D. Take

any isotropic line I in WK . Suppose a nonzero generator of I is e+
√
−D f , where e, f ∈ VQ. Then

ϕ(e+
√
−D f, e−

√
−D f )= 0. From Lemma A.7 we have ϕ(e+

√
−D f, e+

√
−D f )= 0. This implies

that J = 〈e, f 〉 is an isotropic plane in VQ.
We claim that j (I ) = W ∩ VJ . Take H ∈ Ĥ with orthogonal vector v ∈ VQ. Under the orthogonal

decomposition VK =WK ⊕WK ⊕V ′, we can decompose v as v= vW +vW +v
′. Then ϕ(Re(vW ), J )= 0.

From Lemma A.7 we have ϕ(vW , I )= 0. Therefore, ϕ(Im(vW ), I )= 0 and hence ϕ(Im(vW ), J )= 0.



2678 Chenglong Yu and Zhiwei Zheng

Since (VQ, ϕ) has signature (2, N ), the orthogonal complement of J in VQ is negative semidefinite.
Thus ϕ(Re(vW ),Re(vW ))≤ 0 and ϕ(Im(vW ), Im(vW ))≤ 0. We then have

ϕ(vW , vW )= ϕ(Re(vW ),Re(vW ))+ϕ(Im(vW ), Im(vW ))≤ 0.

Suppose ϕ(vW , vW ) < 0, then H ∩B 6=∅. Suppose ϕ(vW , vW )= 0, then vW is an isotropic line in WK .
The vectors Re(vW ) and Im(vW ) in VQ are then isotropic. These two vectors are orthogonal to J ; hence
they belong to J. We deduce that H ⊃ I⊥W . By the definition of j (I ) and VJ , we conclude the claim.

We now have naturally an injective map π j (I )B→ πJ D̂. Taking the union among those isotropic
lines I, we have an injective map

Bt
∐

I

π j (I )B ↪→
∐

σ∈6(Ĥ)

πσ D̂.

After taking quotients by the equivariant actions on both sides, we obtain a morphism π :0\B
j
→0\D̂

6(Ĥ)
.

Actually, the restriction of this π to the boundary component corresponding to I is a finite morphism
between Abelian torsors. We conclude that there is natural extension

π : (0\B)
j
→ (0̂\D̂)

6(Ĥ)

which is a finite morphism between projective varieties. If A satisfies Condition A.3, this π is generically
injective, hence a normalization of its image. �

A5. Main theorem. In this section, we first describe the construction of Looijenga compactification X
H

of X◦ :=X−0\H. We need to successively blow up nonempty intersections of components of 0\H, and
then contract the strict transformations of 0\H via a natural associated semiample line bundle on the
blowup. We then prove existence and finiteness of morphism between Looijenga compactifications on
both sides of X→ X̂.

The blow-up and blow-down constructions with respect to hyperplane arrangement in any normal
analytic variety with a properly given line bundle are discussed in the first three sections in [Looijenga
2003a]. Looijenga applied this general theory to (X

6(H)
, 0\H,L), where X is either arithmetic quotient

of type IV domain D or ball B, and L is the natural automorphic line bundle; see [Looijenga 2003a,
Theorem 5.7; 2003b, Theorem 7.4].

We now describe the blow-up and blow-down constructions before quotient by the arithmetic groups.
The Looijenga compactifications are obtained by the modified spaces quotient by the arithmetic groups.
Denote by PO(H) the set of nonempty intersections of elements in H as hyperplanes in D (or B). Let
L ∈ PO(H) also denote its closure in D6 (or B j ). Denote c(L) := codim(L)− 1.

We first look at the semitoric compactification D6 of D. Denote by (D6)◦ the arrangement complement
of H in D6. Choose L ∈PO(H) a minimal member. Blowing up along L replaces L by the projectivization
of its normal bundle, which is isomorphic to L ×Pc(L). The modified space, denoted by BlL(D

6), has
natural topology, arrangement (the strict transform of the previous one) and automorphic line bundle.
The strict transforms of those hypersurfaces passing through L form a hyperplane arrangement in Pc(L),
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and we denote the complement by (Pc(L))◦. The complement of the new arrangement in BlL(D
6) is the

disjoint union (D6)◦t L× (Pc(L))◦. After blowing up successively until hypersurfaces disjoint, we obtain
the final blowup D̃. This is a disjoint union of (D6)◦ with L× (Pc(L))◦ for all such minimal L appearing
in each step.

Now we can contract L × (Pc(L))◦ along the direction of L for all such L , and obtain D∗ with natural
quotient topology. Set-theoretically, L × (Pc(L))◦ is contracted to (Pc(L))◦. We have the following
description (see [Looijenga 2003b]):

D∗ =
∐

L∈PO(H)

πLD◦ t
∐

σ∈6(H)

πσD◦.

Notice that for σ being the vertex, πσ is identity and πσD◦ = D◦.
The spaces D6, D̃,D∗ constructed above all have natural ringed space structure. Namely, we have

the structure sheaves consisting of continuous functions with analytic restriction to each stratum. The
group 0 naturally acts on those ringed spaces respecting the stratification. The topological quotient
space X

H
:= 0\D∗ has normal analytic structure respecting the stratification; see [Looijenga 2003b,

Theorem 7.4]. According to the Riemann extension theorem, the quotient ringed space structure and the
analytic structure on X

H
coincide.

For the case of ball, parallel argument gives B̃ and B∗. We have

B∗ = B◦ t
∐

L∈PO(H)

πLB◦ t
∐

I

π j (I )B
◦.

This also has natural ringed structure, and X
H ∼= 0\B∗ as analytic spaces.

Theorem A.13 (Main Theorem). There is a natural extension of π : 0\(D − H) → 0̂\(D̂ − Ĥ) to
Looijenga compactifications

π : 0\D
H
→ 0̂\D̂

Ĥ

which is a finite morphism. If A satisfies Condition A.3, the map is a normalization of its image. The same
result holds for ball quotients.

Proof. From Theorem A.10, we have natural morphisms from D6 to D̂6. Near each boundary component,
there is a contraction map from a neighborhood to the boundary itself. The arrangement in total space is
the pullback of smooth arrangement on the boundary. According to the map defined near the boundary
components, we know that any H ∈ Ĥ not intersecting with D is still away from D6 after taking its
closure. From Corollary 7.15 in Chapter II in [Hartshorne 1977], we have injective map D̃→ ˜̂D respecting
the ringed space structures. Notice that the automorphic line bundle on D6 is the pull back of that on D̂6;
hence we have an injective map on the stratum L× (Pc(L))◦ to L̂× (Pc(L̂))◦ which is linear on the second
component. Here L̂ is a minimal member used in certain step of the successive blow-up construction
of D̂, and L is the induced member on the smaller subspace by intersecting with L̂ . After blowing down,
we have a natural injective map D∗→ D̂∗ respecting the ringed space structures.
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This morphism descends to a morphism π : 0\D∗→ 0̂\D̂∗, still in the category of ringed spaces. We
then have an analytic morphism

π : X
H
→ X̂

Ĥ
.

This analytic morphism extends π :X◦→ X̂◦, and sends boundary strata into boundary strata. Combining
with Theorem A.10, the extended morphism π here is finite. If A satisfies Condition A.3, it is generically
injective and hence a normalization of its image.

The same argument also holds for ball quotients. �

List of symbols

(d, k) dimension and degree of a hypersurface
V complex vector space of dimension k+ 2
F degree d polynomial in k+ 2 variables
X degree d k-fold; cubic fourfold when (d, k)= (3, 4)
A a finite subgroup of SL(V ), containing the center µk+2 of SL(V )
A image of A in PSL(V )
λ character of A with specified restriction to µk+2

T equivalence class of (A, λ), called symmetry type of degree d k-fold
V eigenspace of Symd(V ∗) corresponding to (A, λ)
C centralizer of A in SL(V )
N a reductive group acting on V
Vsm/Vss space of smooth/semistable points in V
F GIT quotient of Vsm by N
Fm moduli space of cubic fourfolds with T -markings
F1 moduli space of cubic fourfolds of type T, which admits at worst ADE singularities
F GIT quotient of Vss by N, which is a compactification of F
M moduli space of smooth cubic fourfolds
M GIT compactification of M
(30)3 (primitive) middle cohomology lattice of a smooth cubic fourfold
ϕ topological intersection pairing on 3
η square of the hyperplane class
D̂ local period domain for cubic fourfolds
0̂ monodromy group of the universal family of smooth cubic fourfolds
H1/H∞ 0̂-invariant hyperplane arrangement in D̂

ζ character of A, induced by the action of A on H 3,1(X)
3ζ eigenspace of (30)C corresponding to the character ζ
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σX/σ representation of A on H 4(X,Z)/3
h X/h Hermitian form on H 4(X)ζ/3ζ
D local period domain for cubic fourfolds of symmetry type T
0 normalizer of A in 0̂
Hs/H∗ 0-invariant hyperplane arrangements in D

0\D
H∗ Looijenga compactification of 0\(D−H∗)

P̃ local period map
P global period map
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